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RESUMO

Algoritmos de andlise de agrupamento tém sido testados e continuamente adaptados para
realizar a definicdo de subdominios para estimativa de recursos e reservas minerais com
critérios multivariados, como o K-means (KM) e o Aglomerativo Hierarquico (HC), elaborados
para variaveis nao regionalizadas; e o Aglomerativo Hierarquico Geoestatistico (GHC), que
considera as relacdes geoestatisticas entre as amostras. No presente estudo, 6.719 furos de
perfuratriz do tipo rockdrill da mina de ferro Capanema, localizada na por¢éo centro-leste do
Quadrilatero Ferrifero (Minas Gerais), foram submetidos a quatro diferentes métodos de
agrupamento para avaliar os efeitos da definicdo de subdominios na estimativa dos teores de
ferro. Os agrupamentos foram realizados manualmente (primeiro cenario) com base nos
litotipos da mina; e pela aplicacdo dos algoritmos KM, HC e GHC (segundo a quarto cenarios)
com base nos teores de ferro, alumina e fésforo dos furos. A andlise geoestatistica das
amostras nos cinco cenarios (incluso o de dominio Unico) revelou forte controle estrutural-
litolégico na distribuicdo dos teores de ferro, pois 0s planos principais das elipsoides de
continuidade séo paralelos a xistosidade S, do Sinforme Corrego das Flechas, que abrange
o deposito. O agrupamento das amostras conferiu, no geral, maior acuracia e precisdo para
as estimativas com krigagem ordinaria em relacdo ao cenario de dominio Unico, embora com
pequena diferenca. Destaca-se o agrupamento do algoritmo K-means como o0 cendrio que
apresentou os melhores resultados de estimativa, verificados na validagdo cruzada (maior
coeficiente de correlacdo linear e menores média e variancia dos erros) e na comparacao de
suas estatisticas descritivas com as do conjunto amostral (menor alteracdo da média e da
variancia dos teores de ferro nas amostras). A estimativa sem agrupamento ocasionou o0 maior
efeito de suavizacdo pela superestimativa e subestimativa de teores baixos e altos,
respectivamente, o que resultou no modelo com a distribuicdo mais homogénea de teores.
Para a mina Capanema, ainda que os pequenos ganhos em acuracia e precisao de estimativa
conferidos pela definicdo de subdominios néo justifiquem os efeitos negativos observados e
o tempo empregado, os métodos de agrupamento podem ter Util aplicagdo nos contextos em
gue ha necessidade de maior detalhamento dos contrastes locais de teores, como na

avaliacdo de substancias heterogéneas e modelos de curto prazo.



ABSTRACT

Cluster analysis algorithms have been tested and continually adapted to define subdomains
for estimating mineral resources and reserves based on multivariate criteria, such as K-means
(KM) and Agglomerative Hierarchical Clustering (HC), developed for non-regionalized
variables; and the Geostatistical Hierarchical Clustering (GHC), which considers the
geostatistical relationships between samples. In the present study, 6,719 rockdrill-type
samples from the Capanema iron mine, located in the east-central portion of Quadrilatero
Ferrifero (Minas Gerais), were submitted to four different subdomains definition methods to
asses its effects on the estimates for iron. The subdomains definitions were performed
manually (first scenario) based on the mine's lithotypes, and by cluster analysis with KM, HC
and GHC algorithms (second to fourth scenarios) based on the iron, phosphorus and alumina
sample contents. The geostatistical analysis of the samples in all five scenarios (single-domain
included) revealed a strong sctructural-lithological control in the distribution of iron contents,
as the main planes of the continuity ellipsoids are parallel to the S, schistosity of Corrego das
Flechas synform, which comprises the deposit. The clustering of samples provided, in general,
slightly higher accuracy and precision for ordinary kriging estimates in relation to the single-
domain scenario, but. The clustering of K-means algorithm stands-out as the scenario that
presented the best estimation results, verified by cross validation (higher linear correlation
coefficient and smaller mean and variance of errors) and by comparison of its descriptive
statistics with those of the dataset (smallest change in the iron grades mean and variance).
The single-domain estimate caused the greatest smoothing effect by the overestimation and
underestimation of low and high grades, respectively, which resulted in the model with the
most homogeneous distribution of grades. For the Capanema mine, even though the small
gains in accuracy and precision of estimation conferred by the definition of subdomains do not
justify the time taken, the grouping methods can be usefully applied in contexts in which there
is a need for greater detailing of the local contrasts of contents, as in the evaluation of

heterogeneous substances and short-term models.



1. INTRODUCAO

A avaliacdo de recursos e reservas minerais € composta pela guantificacdo de volume,
massa e teores de bens minerais, bem como na identificacdo das geometrias e extensdes dos
corpos mineralizados no espaco tridimensional (Yamamoto, 2001). Para isso, a avaliacdo se
baseia na teoria de amostragem, que se refere ao ato de selecionar amostras de forma que
estas representem o fendmeno espacial estudado, permitindo ndo s6 sua compreensao, como
também a inferéncia de informacfes nos pontos ndo amostrados, o que é possibilitado pelo
conceito de variavel regionalizada (Matheron, 1963). Os teores de uma substancia de
interesse sdo tidos como uma variavel regionalizada, pois apresentam simultaneamente uma
propriedade estruturada, variando em funcdo de sua posi¢cdo no espaco; e uma propriedade

aleatéria, possuindo alguma imprevisibilidade natural (Sinclair & Blackwell, 2004).

Uma variavel regionalizada pode ser considerada estacionaria quando sua distribuigéo
de frequéncia é constante em todo o dominio, condi¢do raramente observada na natureza
(Goovaerts, 1997). Alternativamente, para o contexto de recursos e reservas minerais, utiliza-
se a decisdo ou escolha de estacionariedade, também denominada como hipétese intrinseca
ou de quasi-estacionariedade, que requer apenas que a variacao espacial seja estacionaria
de segunda ordem em todo o dominio (Goovaerts, 1997; Sinclair & Blackwell, 2004). A
definicdo de subdominios pode ser fundamentada em um ou mais critérios, entre 0s quais se
destacam os geoldgicos, estatisticos e técnico-operacionais, a depender das caracteristicas
da ocorréncia mineral e as necessidades do projeto. Para realizar estimativas com métodos
geoestatisticos, por exemplo, a divisdo do dominio tem como principal finalidade satisfazer a
hipétese intrinseca. Nesse contexto, uma série de algoritmos de andlise de agrupamento
(cluster analysis) tem sido testada e continuamente adaptada para realizar a definicdo de
subdominios com critérios multivariados (Faraj & Ortiz, 2021). Enquanto a maioria dos
algoritmos foi elaborada para variaveis ndo regionalizadas, como o K-means e o Aglomerativo
Hierarquico; também ha aqueles que consideram as relacdes geoestatisticas entre as
amostras, como o Aglomerativo Hierarquico Geoestatistico (Romary et al., 2015; Fouedjio,
2016; Moreira et al., 2020; Faraj & Ortiz, 2021).

Neste estudo, diferentes métodos de definicdo de subdominios foram utilizados para a
estimativa dos teores de ferro da mina Capanema, localizada entre 0os municipios de Santa
Béarbara, Itabirito e Ouro Preto. Operada de 1982 a 2003 pela Minas da Serra Geral S.A.
(MSG), a campanha utilizada consiste em 8.345 furos de perfuratriz do tipo rockdrill obtidos
pela empresa, com classificagédo de litotipos e teores de ferro, silica, fosforo e alumina, além
da porcentagem de perda por calcinagcdo (PPC). Os furos foram submetidos a um
agrupamento tradicional, baseado nos litotipos, e a analise de agrupamento com os algoritmos
K-means, Aglomerativo Hierdrquico e Aglomerativo Hierarquico Geoestatistico; para

comparar os efeitos da definicdo de subdominios nas estimativas dos diferentes cenarios.
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2. METAS E OBJETIVOS

Este trabalho teve como objetivo a estimativa dos teores de ferro da mina Capanema,

no Quadrilatero Ferrifero, com diferentes métodos de definicho de subdominios para

estimativa, visando comparar e avaliar os efeitos de cada método nos resultados. O estudo

também teve como metas comparar a eficiéncia dos algoritmos de analise de agrupamento

(cluster analysis) para o banco de dados da mina e discutir seus potenciais usos.

3. LEVANTAMENTO BIBLIOGRAFICO

3.1. Contexto Geolbgico Regional

A mina de ferro Capanema esta localizada na porcdo centro-leste do Quadrilatero

Ferrifero (QF) (Figura 1), Minas Gerais, borda sul do Craton S&o Francisco.
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Figura 1: Mapa geoldgico do Quadrilatero Ferrifero e localizagdo da mina Capanema. Modificado do banco de

dados da CPRM (2004).
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3.1.1. Litoestratigrafia do Quadrilatero Ferrifero

De acordo com Noce (1995) e Dardenne & Schobbenhaus (2001), a evolugdo do QF
pode ser sintetizada em trés eventos: o ciclo paleoarqueano Pré-Rio das Velhas, o ciclo

neoarqueano Rio das Velhas e o ciclo paleoproterozoico Transamazonico.

Ciclo Paleoarqueano pré-Rio das Velhas

O primeiro ciclo compreende o retrabalhamento de crosta mais antiga em sucessivos
eventos tectono-termais entre 2,85 e 3,30 Ga, o qual resultou na formacdo dos complexos
tonaliticos-trondjemiticos-granodioriticos (TTG) do embasamento (Figura 2), expostos em

estruturas domicas (Noce, 1995).

Ciclo Neoarqueano Rio das Velhas

O ciclo neoargueano se relaciona a formacao do Supergrupo Rio das Velhas entre 2,78
e 2,70 Ga, uma sequéncia metavulcanossedimentar do tipo greenstone belt (Noce, 1995;
Dardenne & Schobbenhaus, 2001). O Supergrupo Rio das Velhas é composto pelos grupos
Quebra Osso, Nova Lima e Maquiné (Figura 2), resultantes da aglutinacdo de blocos
continentais e fechamento oceénico. O Grupo Quebra Osso, unidade basal, é formado por
rochas metakomatiiticas de facies xisto verde com estruturas do tipo pillow lava e texturas
spinifex, intercaladas com metassedimentos quimicos e serpentinitos. O Grupo Nova Lima é
constituido por rochas metassedimentares clasticas, quimicas e vulcanoclasticas, além de
metavulcanicas félsicas e méficas, que se associam a Formacgdes Ferriferas Bandadas (FFBs)
do tipo Algoma. Os filitos grafitosos deste grupo hospedam os principais depésitos auriferos
do QF, do tipo orogénico, como os depdsitos de classe mundial Morro Velho e Cuiaba
(Dardenne & Schobbenhaus, 2001). O Grupo Maquiné, porcao superior do greenstone belt,

corresponde a uma sequéncia metassedimentar de conglomerados, quartzitos, filitos e xistos.

Ciclo Transamazobnico

O Ciclo Transamazébnico, de 2,6 a 2,0 Ga, consiste de uma série de processos
sedimentares, tectbnicos e magmaticos que resultaram na formacdo do Supergrupo Minas,
em discordancia com o Supergrupo Rio das Velhas e os complexos TTG (Noce, 1995). Da
base para o topo, o Supergrupo Minas é composto pelas sequéncias fluviais deltaicas e
marinhas plataformais dos grupos Caraca, Itabira e Piracicaba, pelo grupo marinho imaturo
Sabara (Rosiére & Chemale Jr, 2000), conforme indicado na coluna estratigrafica da Figura
2. Além do inicio da sedimentacdo da Bacia Minas, o Grupo Caraca registra a gradacao dos
metaconglomerados e quartzitos da Formacdo Moeda para os metapelitos da Formacéo
Batatal (Dardenne & Schobbenhaus, 2001). Em contato transicional com o Grupo Caraca, o

Grupo ltabira (2,52 a 2,42 Ga) corresponde ao maior horizonte de sedimentos quimicos do
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Supergrupo Minas e é subdividido nas formacdes Caué e Gandarela, que se intercalam
horizontal e verticalmente (Rosiére & Chemale Jr, 2000).
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Figura 2: Coluna estratigrafica do Quadrilatero Ferrifero. (1) Complexos granito-gnaissicos do embasamento, (2)
Rochas ultramaficas, (3) Rochas méficas, (4) Unidade quimico-clastica, (5) Unidade clastica, (6) Tonalitos, (7)
Conglomerados e quartzitos da Fm. Moeda, (8) Filitos carbonosos da Fm. Batatal, (9) Itabiritos da Fm. Caué, (10)
Dolomitos da Fm. Gandarela, (11) Quartzitos e filitos, (12) Conglomerados e filitos, (13) Conglomerados e
quartzitos, (14) Sills e diques de diabasio. (Dardenne & Schobbenhaus, 2001)

A Formacdo Caué é caracterizada por FFBs metamorficas, deformadas e oxidadas

denominadas itabiritos, além de filitos e dolomitos ferruginosos. De origem sedimentar (tipo
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Lago Superior), os itabiritos contém de 250 a 300 m de espessura e compdem 0s principais
depositos de ferro de alto teor do Quadrilatero Ferrifero, como as minas Aguas Claras, Alegria
e Capanema (Dardenne & Schobbenhaus, 2001). Rosiére & Chemale Jr (2000) classificam
os itabiritos em trés tipos composicionais, todos contendo hematita e martita como fases
dominantes e com kenomagnetita subordinada. Os tipos sdo (a) quartzo-itabirito, 0 mais
comum do QF, que possui o quartzo como um de seus componentes mineraldgicos principais,
tanto nos niveis claros do microbandamento quanto em veios sacaroidais; (b) itabiritos
dolomiticos, os quais apresentam bandas de Fe-dolomita, quartzo e 6xidos de ferro, com ou
sem calcita, clorita e anfibdlio como acessorios; e (c) os itabiritos anfiboliticos, que apresentam

anfibélios de composicédo variada, como grunerita-cummingtonita, tremolita e actinolita.

A Formacdo Gandarela é composta por metadolomitos com itabiritos e filitos
subordinados e tem seu topo marcado por discordancia erosiva com o Grupo Piracicaba
(Figura 2), predominantemente clastico. Os sedimentos do Grupo Piracicaba representam a
alternancia de ciclos transgressivos em um periodo de expansdo oceanica (Noce, 1995;
Dardenne & Schobbenhaus, 2001) e também apresentam discordancia regional com a
unidade sobreposta, 0 Grupo Sabara. Topo do Supergrupo Minas, o Grupo Sabard marca a
colisédo com o arco Transamazdnico, tratando-se de uma sequéncia do tipo flysch (pré a sin-
orogénica) de 2,12 a 2,03 Ga (Noce, 1995).

Ap6s um periodo de estabilidade tectdnica, inicia-se uma fase extensional por volta de
1,75 Ga (rifte Espinhaco). O Grupo Itacolomi e o Supergrupo Espinhaco correspondem a
depdsitos continentais correlatos a vulcanismo &cido continental e intrusdes graniticas

anorogénicas (Dardenne & Schobbenhaus, 2001).

3.1.2. Sinclinal Ouro Fino

A mina Capanema encontra-se na porc¢ao sul do Sinclinal Ouro Fino (Figura 3), cujo
modelo mais recente foi proposto por Franco & Endo (2004). De acordo com 0s autores, 0
sinclinal corresponde a uma dobra antiformal, reclinada, de eixo WNW-ESE sub-horizontal e

vergéncia para sul, desconectada do Sinclinal Gandarela pela Falha do Fundéo.

O Sinforme Cérrego das Flechas apontado no perfil da Figura 3 é a estrutura dominante
da mina e corresponde a segunda fase deformacional descrita pelos autores, na qual foram
geradas dobras de xistosidade S2 de direcdo NW-SE e caimento moderado para NE,

posteriormente sobrepostas pelos eventos D3 e D4.
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3.1.3. Aspectos econbmicos da mina Capanema

Apoés sua descoberta em meados da década de 60, a mina Capanema foi operada de
1982 a 2003 pela Minas da Serra Geral S.A. (MSG), uma joint venture da Companhia Vale do
Rio Doce (CVRD) em associagdo com empresas japonesas, como a Kawasaki Steel
Corporation. A maior parte da producdo da MSG (cerca de 10,5 Mtpa) era adquirida pela
CVRD, a qual realizava o seu beneficiamento na mina de Timbopeba, a 11 km de distancia,

e a comercializagdo do minério (Vale, 2012).

Em dezembro de 2020, a CVRD obteve as licencas para retomar as operagdes da mina
com o Projeto Capanema Umidade Natural e, em novembro do mesmo ano, comecgou a
comercializagdo do minério que havia sido extraido e ainda se encontrava estocado na mina
desde sua paralisacdo em 2003 (Noticias Vale, 2021). Estima-se que a produc¢do se inicie no
segundo semestre de 2023, com capacidade média anual de 18 Mt e vida util de 7 anos. Nos

primeiros 5 anos, no entanto, essa capacidade ser4 de 14 Mtpa, pois a operacdo se
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concentrara no reaproveitamento da pilha de estéril denominada WH, de hematita alterada
enriguecida em alumina e fésforo, sem a geracéo de rejeito (Formulario de Referéncia Vale,
2021).

Em 31 de dezembro de 2020, as reservas totais de minério de ferro do Complexo
Mariana (no qual a mina Capanema esta inserida) correspondiam a 1.810 Mt a um teor médio
de 46,7% (reservas provadas de 727Mt @ 45% e provaveis de 1.083 Mt @ 47,9%) (Relatério
Anual Vale, 2020). Os recursos obtidos por Rocha (1999) para a mina Capanema
correspondem a cerca de 139 Mt a um teor médio de 62,30%, levando-se em consideragao
os teores médios de corte da mina. Na Tabela 1, sdo apresentados os teores de corte para o
minério e para o Run of Mine (ROM) por faixa granulométrica. O ROM do Complexo Mariana
€ processado por britagem padréo, classificacéo e concentragcéo para producéo de sinter feed,

minério granulado e pellet feed nas usinas de beneficiamento (Relatério Anual Vale, 2020).

Tabela 1: Teores de corte maximos e minimos para o minério e para o ROM da mina Capanema por faixa
granulométrica. (Rocha, 1999)

Faixa granulométrica  Fe (%)  AlzOa  Si0Oz(%) P (%) PPC (%)
(%)

<0,15 mm 62,50 4 x * -
Min. =0,15 mm e <6,3 80,20 * * . .

>6,3 56,00 o * . *

<0,15 mm . 2,90 3,30 0,10 ‘ o
Max. =0,15mme <63 * 1,50 8.40 0,09 *

>6,3 . 1,20 16,0 0,055 *

Min. 59,80 1,10 7,80 0,085 300
ROM

Max. 60,50 1,90 9,70 0,085 3,80

3.2. Andlise de Agrupamento (Cluster Analysis)

Andlise de agrupamento consiste num conjunto de técnicas que visam distribuir as
observacdes em grupos (clusters) de modo que a semelhanca entre elas seja a maior possivel
dentro de cada grupo e a menor entre grupos. Entre os métodos mais utilizados, podem-se
citar os algoritmos ndo supervisionados K-means (MacQueen, 1967) e Aglomerativo
Hierarquico (Sokal & Sneath, 1963). Para ambos os métodos, a escolha das variaveis é
decisiva e deve-se favorecer as que tenham alto poder de discriminacdo e sejam relevantes

ao problema (James et al., 2013).

3.2.1. Algoritmo K-means
Na primeira iteragéo, o algoritmo distribui as amostras de maneira aleatoria entre uma

quantidade k de grupos predefinida pelo usuario (Figura 4a) e calcula as médias (centroides)
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de cada grupo (Figura 4b). As amostras sdo entdo redistribuidas de modo que a soma do
guadrado das distancias entre amostras e centroides seja minima (within-clusters-sum-of-

squares) (Figura 4c) (James et al., 2013; Kassambara, 2017).
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Figura 4: llustracdo da primeira iteracdo do algoritmo K-means. (a) Distribuicdo aleatéria das amostras em 3
grupos, (b) calculo dos centroides dos agrupamentos e (c) redistribuicdo das amostras de acordo com a posi¢cao
dos centroides. (James et al., 2013)

Em seguida, a posi¢do dos centroides é recalculada (Figura 5a) e as amostras sao
novamente redistribuidas para que pertencam ao cluster de centroide mais proximo. Essa
nova inclusdo e remocao de amostras nos clusters alteram suas médias, alterando também a
posicéo dos centroides. Este processo de célculo dos centroides e redistribuicdo das amostras

se repete até que as médias dos clusters se estabilizem (Figura 5b).
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Figura 5: llustragcao de mais itera¢g8es do algoritmo K-means. (a) Os centroides sao reposicionados de acordo com
as amostras a eles atribuidas na primeira iteracéo e (b) o processo se repete n vezes até atingir a estabilizacao
dos centroides. (James et al., 2013)

Além da quantidade k predefinida de clusters, o agrupamento realizado pelo K-means
também depende da distribuicdo aleatoria da primeira iteracdo (James et al., 2013;

Kassambara, 2017). A cada execug¢do do algoritmo, portanto, o resultado final obtido é
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diferente. Na literatura, recomenda-se executa-lo mais de uma vez e observar qual padréo de
agrupamento € mais frequente (James et al., 2013) e, ainda, ha solu¢des que buscam otimizar
0S agrupamentos e retornar resultados mais consistentes, como o K-means++ de Arthur &
Vassilvitskii (2007).

Um dos métodos para a escolha da quantidade de agrupamentos é denominado método
do cotovelo e consiste na analise da soma total do quadrado das distancias (inércia) pela
guantidade de clusters (Figura 6). Os pontos de inflexdo (elbow points) do grafico podem ser
considerados como quantidades adequadas de clusters, pois evitam tanto o agrupamento de
amostras muito distintas em poucos grupos, guanto o agrupamento de poucas amostras em

muitos grupos (Kassambara, 2017; Yuan & Yang, 2019).
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Figura 6: Exemplo de gréafico da inércia total pela quantidade de clusters. (Yuan & Yang, 2019)

3.2.2. Algoritmo Aglomerativo Hierarquico

O agrupamento hierarquico pode ser subdividido nos tipos aglomerativo e divisivo, que
se caracterizam pela estruturagdo dos dados em uma hierarquia multiniveis, geralmente
representada por dendrogramas (Figura 7) (Kassambara, 2017). Para isso, cada observacdo
é tratada como um cluster e os clusters sdo sucessivamente unidos em pares até que haja
um unico grupo (raiz). Os algoritmos aglomerativos possuem diferentes métodos para
determinar a semelhanca entre os pares de clusters, como o método Ward, um dos mais
utilizados. O método Ward assume que cada grupo é representado por um centroide,
realizando a unido dos pares com o objetivo de minimizar a variancia desses centroides, de

modo semelhante ao K-means (Kassambara, 2017).

Duas vantagens dos métodos hierarquicos sobre o K-means sado: dispensar a
predefinicdo da quantidade de clusters e retornar 0 mesmo resultado sempre que executado

para determinados dados. Para obter k grupos, o usuério deve escolher o nivel hierarquico
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correspondente, conforme ilustrado na Figura 7b. Geralmente, o nivel hierarquico (ou altura)
dos dendrogramas corresponde a uma medida relativa da proximidade entre os grupos ou,

como no caso da Figura 7b, & distancia euclidiana entre os pares no espa¢o multivariado.

O K-means, por sua vez, é menos sensivel a outliers e sua evolucao é dindmica, ou
seja, um ponto inicialmente inserido em um cluster pode ser atribuido a outro ao longo das n

iteracOes (James et al., 2013; Kassambara, 2017).

(a) (b)

10-

N fah L

Observacdes Observagdes

Altura

Figura 7: Representagdo de (a) dados estruturados em uma hierarquia multiniveis (dendrograma) e (b) selecdo
de um nivel hierarquico para gerar quatro clusters distintos. (Kassambara, 2017)

Para que os algoritmos K-means e Aglomerativo Hierarquico considerem a posicao
espacial de amostras regionalizadas, € possivel inserir as coordenadas geograficas como
varidveis adicionais. Entretanto, neste caso, o0s algoritmos ndo distinguem o0 espaco
geografico do multivariado e, por isso, frequentemente desconsideram ou a continuidade
espacial ou a consisténcia estatistica de cada dominio, honrando apenas um dos dois
aspectos (Romary et al., 2015; Fouedjio, 2016). Autores como Romary et al. (2015) e Fouedjio
(2016) propuseram metodologias para incluir a dependéncia espacial de variaveis
regionalizadas no processo de agrupamento com algoritmos ndo supervisionados. O método
Aglomerativo Hierarquico Geoestatistico, elaborado por Romary et al. (2015), é do tipo
espacial por considerar, além da proximidade multivariada entre os pontos, a proximidade

geografica pelo uso de gréaficos de amostragem.
3.3. Estimativa e Validacdo dos Resultados

3.3.1. Geoestatistica

A hipoétese intrinseca implica que a distribuicdo espacial de uma variavel regionalizada
dentro do campo geométrico pode ser descrita por uma fungéo (1) que depende apenas da

distancia e orientacao entre os pontos (Goovaerts, 1997):

2y(h) = 2SR [Z(x + h) — Z(0)]? (1)
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sendo 2y(h) a funcéo variograma; n a quantidade de pares de pontos separados por
uma distancia h, Z(x) o valor da variavel regionalizada no ponto x e Z(x+h) o valor da mesma
variavel no ponto (x+h) (Yamamoto & Landim, 2013). Os resultados do célculo da funcéo
variograma, que é uma func¢éo discreta, podem ser observados em um grafico de disperséo
gue relaciona a variancia espacial entre pares de pontos com as distancias de separacdo
entre eles, denominado variograma experimental. Os variogramas experimentais ndo sao
utilizados nas etapas subsequentes, pois a funcao variograma deve ser continua, com valores
de variancia espacial para todas as direcées e distancias. Por isso, deve-se lancar méo do
ajuste de um modelo tedrico (modelo teérico de variograma) com funcdes positivas e
monoténicas crescentes, como o esférico, 0 exponencial e 0 gaussiano, que sdo 0s mais
comuns (Rossi & Deutsch, 2014). As propriedades de um modelo teérico de variograma
descrevem o comportamento da variavel regionalizada em determinada orientacdo e séo
(Figura 8):

i. Alcance ou amplitude (a): distancia a partir da qual as amostras passam a ser
independentes e separa o campo estruturado (em que ha correlacéo espacial) do
campo aleatdrio (em que as amostras sao espacialmente independentes);

ii. Efeito pepita (Co): valor da funcdo variograma proximo a origem, comumente
diferente de zero devido a amostragem, aos processos analiticos e a variabilidade
natural da mineralizagéo;

iii. Patamar (Co + C,): valor da variancia em que o variograma se estabiliza ou perde

a estrutura (variancia espacial maxima), que caracteriza o campo aleatorio;

- Alcance
Espacamento entre amostras (h)

iv. Variancia espacial (C,): patamar subtraido o efeito pepita.
I I I 1
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t |
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Figura 8: Propriedades de um modelo de semivariograma. (Sinclair & Blackwell, 2004)
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Tratando-se de uma funcao direcional, as propriedades de um variograma podem mudar
de acordo com a direcao analisada e, neste caso, configuram um fenémeno anisotrépico. A
anisotropia pode ser classificada como geométrica (diferentes amplitudes), zonal (diferentes
patamares) ou mista (diferentes amplitudes e patamares); e representada como uma elipsoide
de continuidade a partir da analise estrutural de trés direcdes: a de maior alcance (D1), a de

menor alcance ortogonal a D1 (D2) e a ortogonal a D1 e D2 (Yamamoto & Landim, 2013).

3.3.2. Krigagem ordinéria (KO)

A krigagem ordinaria é considerada um melhor estimador linear ndo enviesado (best
linear unbiased estimator - BLUE), pois a esperan¢ca matematica dos erros € nula (ndo
enviesado) e a determinacdo dos pesos de estimativa € realizada para minimizar a variancia
desses erros (Yamamoto & Landim, 2013). A krigagem ordinaria também é denominada como
um algoritmo nao-estacionario, pois ndo assume que a meédia global é invariante para todo o
depdsito como a krigagem simples, e considera que as médias (desconhecidas) sao
invariantes apenas localmente. Para isso, e para que a ponderagdo ndo seja enviesada (soma
dos pesos igual a um), o0 método utiliza o multiplicador de Lagrange (u) como incégnita (Rossi
& Deutsch, 2014). Os pesos séo entdo determinados pela resolu¢cdo de um sistema com n+1
equacdes e n+1 pesos, que pode ser apresentado na forma matricial (Sinclair & Blackwell,
2004; Yamamoto & Landim, 2013):

Y(su,s1) v(su,sz2) v(sush) 1] [Wa Y (S1,50)
Y(s2,51) v(s2,82) v(S2,8n) 1 Wz | _ Y (S2,50) )
Y(SnS1) ¥Y(SnS2) Y(Spsp) 1 Wn Y (S, So)
1 1 1 0 u 1
Matriz C Matriz D

em que y(s;,Sj) S&o as variancias espaciais entre as amostras estimadoras, w; S840 0s
pesos a serem determinados e y(si,So) S40 as variancias espaciais entre cada ponto
amostrado e o ponto estimado so. Desse modo, a Matriz D é considerada a matriz de distancia
estatistica, pois quanto menor for a variancia espacial entre a amostra estimadora e o ponto
estimado, maior sera o peso atribuido a ela (Pyrcz & Deutsch, 2014). Por sua vez, a Matriz C
€ denominada matriz de desagrupamento, pois quanto maior a proximidade estatistica entre
duas amostras estimadoras, menor é a variancia e, consequentemente, menores 0S pesos
atribuidos a elas. Esta propriedade é capaz de gerar pesos negativos (efeito tela), que
minimizam os efeitos de redundéncia dos dados, gerada pelo adensamento da malha e o
alinhamento de amostras em uma mesma direcdo. Entretanto, pesos negativos também

podem apresentar efeitos indesejaveis, como (Sinclair & Blackwell, 2004):

i. Superestimativa, quando uma amostra de baixo teor recebe peso negativo;
ii. Subestimativa, quando uma amostra de alto teor recebe peso negativo;

iii. Estimativa de teores fisicamente impossiveis (negativos), quando um outlier
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recebe peso negativo, por menor que seja o0 peso.

Na ocorréncia desses efeitos, sobretudo da estimativa de teores fisicamente
impossiveis, € possivel utilizar diferentes métodos de correcdo dos pesos, como igualar todos
0S pesos negativos a zero e reajustar 0s positivos proporcionalmente, mantendo-se o ndo

enviesamento.

3.3.3. Métodos de validacao de estimativa

Dentre os métodos amplamente utilizados pode-se citar a comparacdo entre as
estatisticas descritivas das amostras e do modelo estimado, a valida¢do cruzada e a andlise

de deriva.

A comparagdo entre as estatisticas descritivas consiste em um método de validagéo
global das estimativas e deve considerar o efeito de suavizagdo, proprio de estimativas
baseadas em médias ponderadas, conforme mostra a Figura 9b com a reducé&o da variancia.
De modo geral, busca-se observar quéo diferentes séo a distribuicdo amostral e a de teores
estimados através da comparacdo dos histogramas e das medidas de tendéncia central e
disperséo, além da elaboracéo de gréaficos de dispersdo como Quantil-Quantil ou Percentil-
Percentil (Abzalov, 2016).
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Figura 9: Histogramas (a) dos teores das amostras, (b) dos teores estimados na validagdo cruzada e (c) das
diferencas entre os valores reais e estimados; e (d) grafico de disperséo entre valores reais e estimados. (Sinclair
& Blackwell, 2004)
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Na validacdo cruzada, um método de validacdo local, executa-se a extragdo de uma
amostra do banco de dados e sua estimativa pontual pela interpolagdo das amostras
remanescentes na vizinhanca. Este processo é repetido sucessivamente para as n amostras
do banco de dados com determinados parametros de vizinhanca e, para os métodos
geoestatisticos, modelos tedricos de variograma; o que permite o confronto entre os valores
reais das amostras extraidas e suas estimativas pontuais. Quanto maior a correlacao linear
positiva entre o cenario real e o cenéario estimado, melhor é considerada a eficacia dos
parametros de vizinhanca e modelos tedricos de variograma utilizados (Figura 9d). Além da
dispersao entre os valores reais e as estimativas pontuais, observa-se também a distribuicao
do erro (diferenca entre eles), cuja média desejada é zero. O deslocamento da média do erro
para a direita ou para a esquerda indica que houve superestimativa sistematica ou
subestimativa sistematica, respectivamente (Figura 9c), refletindo a acuracia da estimativa,
enguanto a variancia do erro representa a sua preciséo (Sinclair & Blackwell, 2004; Abzalov,
2016).

Andlises de deriva consistem na subdivisdo do depdésito em fatias de determinada
espessura ao longo de um eixo de referéncia para a visualizagéo gréafica das médias moéveis
das amostras e do modelo estimado (Abzalov, 2016). Através do gréafico, denominado grafico
em fatias, swath plot ou grafico em teia (Figura 10), observa-se a aderéncia entre as médias
moveis, que reflete a acuracia da interpolacéo realizada e aponta em quais fatias do depoésito

houve subestimativa ou superestimativa, tratando-se de um método de validagéo local.
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Figura 10: Swath plot ao longo da direcao E-W, com fatias N-S de espessura igual a 50 metros. (Rossi & Deutsch,
2014)
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4. MATERIAIS E METODOS

4.1. Materiais

4.1.1. Banco de dados

O banco de dados consiste em uma Unica planilha que abrange um conjunto de 8.345
furos verticais de perfuratriz tipo rockdrill. Como cada furo corresponde a uma amostra de 13
metros, sdo no total 108.485 metros amostrados com informagdes de litotipos, PPC e teores

de ferro, alumina, fésforo e silica (Tabela 2).

Tabela 2: Sintese das informag¢des do banco de dados.

Campo Informacgéo
FILENAME Nome do arquivo de origem (n&o acessado)
X Coordenada em X
Y Coordenada em Y
z Coordenada em Z (centro do furo)
BHID Identificag&o dos furos
FROM Inicio do intervalo (m)

TO Final do intervalo (m)
BLOCO Identificacdo do bloco de lavra

LITH Cadigo de litotipo

Fe Teor de ferro (%): Fe;03

Si02 Teor de silica (%)

Al203 Teor de alumina (%)
P Teor de fésforo (%)

PPC Perda por calcinacéo (%)
LENGTH Comprimento das amostras (m)
RADIUS (Campo formacional para softwares)

A0 Azimute dos furos
BO Mergulho dos furos
Co Desvio dos furos

Os furos foram obtidos de maneira sistematica, ou seja, a malha estudada é regular.
Horizontalmente, a malha é rotacionada para a direcédo de 135°. A distancia entre amostras é
de 28,28 metros nas direcdes NE-SW e NW-SE para todos os pontos, que definem uma area
amostral de aproximadamente 1,5 km2 (Figura 11). Verticalmente, as amostras estdo

distribuidas entre 18 bancadas, que distam 13 metros uma da outra (Figura 12).
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4 .1.2.Infraestrutura de informéatica

Foram utilizados os softwares comerciais Studio RM® (Datamine Software), Supervisor®
(Datamine Software) e Isatis.neo Mining® (Geovariances), bem como programacdo em
linguagem Python com o uso do software livre Jupyter Notebook e as bibliotecas Sklearn
(Pedregosa et al., 2011) e Scipy (Virtanen et al., 2020).

4.2. Métodos

4.2.1. Levantamento bibliogréafico

O levantamento e o estudo de dissertacdes, teses, artigos, livros e demais obras acerca
dos temas pertinentes permitiram a maior compreensdo da area de estudo, técnicas

empregadas e resultados obtidos.

4.2.2. Validagdo e analise exploratdria dos dados

A validacdo do banco de dados consistiu na busca por valores incongruentes e sua
correcdo, quando necessaria. Como parte da analise exploratéria dos dados (AED), foram

realizadas as analises estatisticas uni e bivariada dos dados.

4.2.3. Definigbes de subdominios

As amostras foram submetidas a definicdo de subdominios com base na classificagéo
original dos litotipos da mina em minério ou estéril e a analise de agrupamento com 0s
algoritmos K-means (KM), Aglomerativo Hierarquico (HC) e Aglomerativo Hierarquico
Geoestatistico (GHC).

4.2.4. Modelo de blocos, andlise geoestatistica e estimativa

Os blocos do modelo foram classificados em estéril, minério ou de transi¢ao, a depender
da classificacdo das amostras no entorno, para realizar as estimativas por subdominios. ApGs
a andlise geoestatistica de todos os cenérios, as estimativas foram realizadas por krigagem
ordinéria (KO).

4.2.5. Validag&o da estimativa e comparacao entre 0s cendrios

Para avaliar e comparar os agrupamentos, foram utilizadas legendas de teores e
andlises de contato, além da obtencé&o de boxplots por subdominio em cada cenério. Métodos
de validacgéo locais e globais de estimativa foram aplicados também para avaliar os efeitos de
cada cenario nas interpolacdes. Entre eles: a comparacdo das estatisticas descritivas do
conjunto amostral e dos modelos estimados, a validacdo cruzada para obtencéo dos erros e
coeficientes de correlagéo linear em cada cenario, a analise de deriva e a geracéo de graficos

guantil-quantil (Q-Q plots).
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5. RESULTADOS OBTIDOS

5.1. Andlise Exploratéria dos Dados

5.1.1.Litotipos da mina Capanema

Os litotipos presentes no campo LITH sdo HA, HB, SI, WH, SIA e SIP (Figura 13),
conforme classificagcéo realizada pela MSG e registrada por Massahud (1996 apud Rocha,
1999) em relatdrio interno, a partir dos critérios: cor, textura, compactacao e teores de ferro,
alumina, fésforo e silica. Desses, sdo considerados litotipos de minério HA, HB e SI, em
contraste aos demais litotipos, com baixo teor de ferro (~50%) e/ou alta concentracdo de
contaminantes.

Ausente HE-HematitaE M — SIA - ltabirito Mole Anfibolitico [l — WH - Hematita Alterada
B — HA-HematitaA W — SI- Itabirito Mole [ — SIP - Itabirito Muite Mole

0 250 500 750m
Nyt [ I

Figura 13: Malha dos furos de perfuratriz em perspectiva com legenda de litotipo.

Conforme Massahud (1996 apud Rocha, 1999) e Fonseca (2014), os litotipos presentes
se caracterizam como itabiriticos e hematiticos:

Itabiriticos

Compostos sobretudo por hematita (Fe20O3), com baixa concentracdo de magnetita
(Fes0.) e conteudo variavel de goethita (FeOHy).

i. Itabirito Mole (SI): intercalagédo de bandas de silica e hematita ndo consolidadas
com 50% a 60% de ferro. Considerado um itabirito rico.
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il. Itabirito Muito Mole (SIP): intercalagdo de bandas de silica e hematita ndo
consolidadas, menos compacto que o anterior, com teores de ferro inferiores a
~50%. Considerado um itabirito pobre.

iii. Itabirito Mole Anfibolitico (SIA): intercalacdo de bandas de silica e hematita ndo
consolidadas com anfibdlio bastante alterado, em que o 6xido de ferro

predominante é a goethita e os teores variam de 55 a 60%.

Hematiticos

Descritos como camadas continuas com 10 a 30 metros de espessura com teores de
ferro acima de 62%. Ainda de acordo com Fonseca (2014), quanto mais exposto e alterado o

hematitito, mais empobrecido em ferro e enriquecido em contaminantes (alumina e fésforo).

i. Hematita A (HA): laminada e bandada, fridvel a pulverulenta, de baixa dureza e
com poucos leitos de silica livre.

ii. Hematita B (HB): laminada e bandada, com maior frequéncia de leitos silicosos.

iii. Hematita Alterada (WH): laminada e bandada, rica em minerais hidratados
(hidréxidos de ferro, hidroxidos de aluminio e silicatos hidratados de aluminio),

com teores em torno de 60% de ferro, baixa silica e rica em contaminantes.

5.1.2. Validagéo e tratamento dos dados

Foram identificados 1.365 registros cujos valores de ferro, alumina, silica e fésforo eram
simultaneamente iguais a zero, além de possuirem PPC ausente. Estes registros, distribuidos
por quatro bancadas e ndo correspondentes a litotipos especificos, foram interpretados como
valores ausentes e desconsiderados no fluxo de trabalho, restando 6.980 amostras vélidas.
Ainda, visando a definicdo dos subdominios, foram removidas 261 amostras que possuiam
teor ausente de fosforo, pois os algoritmos de agrupamento ndo admitem o uso de

observacdes ausentes, restando 6.719 amostras para o fluxo de trabalho.

Tendo em vista a definicAo de subdominios com base nos litotipos, realizou-se a
classificacdo das 18 amostras com litotipo ausente através de Analise Discriminante Mdltipla,
a qual utiliza n variaveis métricas (ferro, alumina e fésforo) agrupadas em i grupos discretos
(os seis litotipos da mina) para definir, com base em amostras conhecidas, a qual grupo
pertence uma amostra indefinida (Pinches, 1980). Como resultado, treze das amostras foram
classificadas como HB, trés amostras como HA e duas como SIA, com indice de acerto de

aproximadamente 81%.

5.1.3. Andlise estatistica

As medidas de tendéncia central, disperséo e forma de todas as variaveis foram obtidas

tanto para as amostras de maneira geral, apresentadas na Tabela 3, quanto por litotipo
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(Apéndice 1). Destacam-se na Tabela 3 a alta variabilidade do fosforo (CV = 4,62) e a baixa
variabilidade do ferro (CV = 0,09), que chega a ser inferior a 0,06 na maioria dos litotipos.

Destaca-se também o alto teor médio do ferro para o depdsito como um todo (59,89%).

Tabela 3: Estatisticas descritivas gerais do banco de dados validado e tratado.

Variavel n Minimo Méaximo Média Variancia S Ccv
Fe 6.719 3,08 67,67 59,89 28,62 535 0,09
Al,Os 6.719 0,00 20,20 1,49 1,69 1,30 0,87
P 6.719 0,00 10,61 0,12 0,33 0,58 4,62
SiO» 6.719 0,00 93,30 8,57 79,22 8,90 1,04
PPC 6.719 0,01 14,37 3,95 5,43 2,33 0,59

n = nimero de amostras; s = desvio padrdo, CV = coeficiente de variagdo

Conforme esperado, os litotipos pobres em fésforo e alumina e ricos em ferro sdo HA
(~65% Fe), HB (~62% Fe) e Sl (~58% Fe), conforme exemplificado na Figura 14. As amostras
dos demais litotipos apresentam ou baixo teor de ferro (SIP) ou alta PPC e concentracdo de

contaminantes (SIA e WH), como ¢ ilustrado na Figura 14 e nos boxplots do Apéndice Il
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Figura 14: Boxplots dos teores de (a) ferro e (b) alumina por litotipo do banco de dados validado e tratado.

Nos histogramas apresentados na Figura 15, verifica-se: a distribuicdo assimétrica
positiva dos conteudos de silica, alumina e fésforo e da PPC, a distribuicdo assimétrica
negativa do conteudo de ferro e a presenca de outliers. Observa-se a ocorréncia de outliers
de ferro, silica, alumina e fésforo, sendo que os valores extremos do fésforo podem ser
considerados uma segunda populagdo com teores entre 1-10%, aproximadamente (Figura
15c). Os histogramas para os dados originais e para os dados validados e tratados podem ser
observados no Apéndice lIl.
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Na analise bivariada, os coeficientes de correlacdo linear de Pearson (Tabela 4)
apontam correlacéao linear superior a |0,7| apenas entre as variaveis silica e ferro (r =-0,91) e
moderada entre PPC e alumina (r = 0,78).

Tabela 4: Matriz de correlacgao linear entre as variaveis numéricas do banco de dados validado e tratado,
destacadas as maiores correlages.

Al203 Fe P PPC  SiO2

Al203 - 0,088 0,050 0,780 -0,430
Fe 0,088 - 0,020 0,210 -0,910
P 0,050 0,020 - 0,094 -0,048
PPC 0,780 0,210 0,094 - -0,560

Si02 -0,430 -0,910 -0,048 -0,560 -

Os graficos de dispersao evidenciam como os teores de ferro e silica foram critérios
preponderantes na classificacéo dos litotipos HA, HB, Sl e SIP, como ilustrado na Figura 16a.
Curiosamente, quando observados separadamente, os outliers do fésforo (teores 1-10%,
conforme o histograma) possuem correlacédo linear muito elevada com a alumina e a PPC
(Figura 16b). Os diagramas de dispersdo de todos os pares de variaveis podem ser

observados no Apéndice V.
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Figura 16: Graficos de disperséo entre (a) ferro e silica e (b) entre os outliers de fosforo e a perda por calcinagao
do banco de dados validado e tratado com legenda de litotipos.

5.1.1.Analise visual das variaveis no espaco

O uso de legendas de teores evidenciou, visualmente, alguns padrdes na distribuicdo
espacial de teores dos elementos analisados, como a forte variacéo vertical do fésforo (Figura
17). Verifica-se também menores teores de ferro e alumina e menores porcentagens de PPC
nas amostras mais distantes da superficie topogréafica, conforme ilustrado no perfil da Figura
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18, devido a geometria da Sinforme Corrego das Flechas e o forte controle litologico (Figura

3). O Apéndice IV é composto pelos mapas de pontos amostrais, com legenda de teores, de

todas as variaveis.
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Figura 18: Perfil vertical SW-NE da malha com legenda de teores de ferro.
5.2. Agrupamento das Amostras

A primeira definicdo realizada se baseou somente nos litotipos. As amostras de HA, HB
e Sl foram classificadas manualmente como minério (1) e as amostras de SIA, SIP e WH,
como estéril (0). Neste estudo, “estéril” refere-se a todas as observacdes que ndo apresentam
simultaneamente alto teor de ferro (>55% para a mina Capanema) e baixa concentracéo de

contaminantes, de acordo com a Tabela 1 de referéncia.

Os demais cenérios de agrupamento foram obtidos com os algoritmos de analise de
agrupamento KM, HC e GHC a partir das variaveis-critério ferro, alumina e fosforo.
Considerando-se as correlagfes silica-ferro e PPC-alumina observadas na andlise
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exploratoria, o uso da silica e da alumina foi dispensado para evitar ruidos e a geragao de
grupos redundantes. Antes da aplicacdo dos algoritmos, as variaveis-critério foram

padronizadas para evitar que as diferentes escalas enviesassem 0s agrupamentos.

De acordo com o0 método do cotovelo (Figura 19), o agrupamento mais eficiente para o
banco de dados com as variaveis-critério escolhidas corresponde a definicdo de quatro
subdominios. Na aplicagdo do K-means com a biblioteca Scikit-learn (Pedregosa et al., 2011),
o algoritmo foi executado dez vezes com a predefinicdo de quatro clusters e escolheu-se um

dos resultados que apresentavam o padrdo de agrupamento mais frequente.
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Figura 19: Gréafico da inércia total (soma total dos quadrados intra-cluster) pela quantidade de clusters com o
algoritmo de analise de agrupamento K-means.

Na aplicacdo do HC (biblioteca Scikit-learn) e do GHC (software Isatis.neo), 0s niveis
hierarquicos escolhidos foram os que resultavam também em quatro agrupamentos e o critério
de proximidade utilizado foi 0o Ward para ambos os algoritmos. Embora a interface do GHC no
software Isatis.neo seja bastante personalizavel, optou-se por utilizar a configuracédo default
da ferramenta, que atribui 0 mesmo peso a todas as variaveis-critérios e assume um cenario

isotropico de amplitude igual a 1.000 m.

Com a andlise estatistica de cada cluster, verificou-se a tendéncia de todos os
algoritmos distinguirem: um grupo de alto teor de ferro e baixa concentracao de contaminantes
(cluster 0), dois grupos com alto teor de ferro e alta concentracdo de cada contaminante
(clusters 1 e 2), e um quarto grupo de baixo teor de ferro (cluster 4), conforme pode ser
observado na Tabela 5. Para padronizar todos os cenarios, os clusters foram reagrupados em
minério (1) e estéril (0) conforme apresenta-se na Tabela 5, utilizando-se como critério as
estatisticas de ferro e de contaminantes em cada um. Esta reclassificagdo binaria também
serviu para aumentar a quantidade de observagdes em cada grupo e assim n&o restringir
demais a quantidade de amostras estimadoras disponiveis para cada bloco, além de facilitar
a classificacdo dos proprios blocos com base nas amostras adjacentes, excluindo-se
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situacdes em que um unico bloco poderia ser circundado por quatro grupos diferentes, por

exemplo.

Tabela 5: Teores médios das variaveis critério em cada agrupamento por algoritmo de analise de agrupamento,
destacas as médias que caracterizam cada grupo.

. Teor médio .

Algoritmo Cluster % Fe % AI203 %P Subdominio
0 62,91 1,31 0,07 Minério
K-means 1 60,83 1,60 4,66 Estéril
2 59,50 4,11 0,09 Estéril
3 52,75 0,67 0,05 Estéril
0 62,12 0,96 0,05 Minério
Aglomerativo 1 60,81 1,37 3,97 Estéril
Hierarquico 2 61,05 3,10 0,08 Estéril
3 50,71 0,69 0,05 Estéril
Aglomerativo 0 61,90 1,09 0,12 Miné,ri.o
Hierarquico 1 61,29 1,56 5,08 Est?r!l
Geoestatistico 2 61,19 3,13 0,08 Ester!l
3 52,52 0,70 0,05 Estéril

Espacialmente, os resultados dos algoritmos HC e GHC sao muito semelhantes e se
diferenciam do K-means sobretudo em relagéo aos clusters 0 e 2 (Figura 21), pois cerca de
50% das amostras do cluster 2 nos algoritmos do tipo hierarquico foram atribuidas ao cluster

0 pelo K-means.

Aglomerativo
Hierarquico
_________________ : Geoestatistico

Aglomerativo
Hierarquico

K-means

CLUSTERS

----------------- m—o
e 2 . 1
2

H—:

Figura 20: Malha dos furos de perfuratriz com a legenda de clusters por algoritmo de analise de agrupamento.
Linhas tracejadas demonstram em quais por¢des da malha o resultado do K-means se assemelha mais com o HC
e o GHC.

Na Figura 21, verifica-se que a semelhanca entre os clusters identificados por cada
algoritmo ndo se restringe as médias e todos possuem distribuicdes estatisticas parecidas.
Observa-se também a inclusdo de outliers indesejados no cluster 0, de maior interesse, pelos

algoritmos K-means (para a variavel fésforo) e GHC (para as variaveis ferro, alumina e
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fésforo).
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Figura 21: Boxplots dos teores de ferro, alumina e fosforo em cada cluster por algoritmo de andlise de
agrupamento. K-means (KM), Aglomerativo Hierarquico (HC) e Aglomerativo Hierarquico Geoestatistico (GHC).
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5.3. Modelo de Blocos

As configuracBes utilizadas para a geracdo do modelo de blocos visaram a colocacgéo
das amostras has arestas verticais das células parentais, conforme a Figura 22. Para isso, as
células parentais tém as configuracfes da Tabela 6. Como o modelo de blocos foi rotacionado,
refere-se aos eixos X, Y e Z ap6s rotacdo como eixos U, V e W, respectivamente. Sao, no
total, 47 células no eixo U (-46°) do modelo, 110 células no eixo V (44°) e 18 no eixo W

(vertical).

Tabela 6: Propriedades das células parentais do modelo de blocos.

Rotagcdo Dimensdoem U DimensdoemV Dimensdo em W

-46° 28,28 m 28,28 m 26m

Figura 22: Modelo de blocos sobre a malha dos furos de perfuratriz em planta.
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5.3.1. Definicdo dos Subdominios

A partir da reclassificacdo binaria (Tabela 5), os cenarios foram simplificados sem
prejuizo no agrupamento das amostras de maior interesse (minério), o que facilitou a o
agrupamento das células do modelo de blocos nos mesmos subdominios de suas amostras
adjacentes. Para isso, as células foram consideradas minério quando possuiam mais
amostras dessa natureza em suas arestas verticais, e consideradas estéril utilizando-se a
mesma légica. Ainda, as células que compartiihavam a mesma quantidade de amostras de
estérii e de minério foram consideradas um subdominio de transicdo, conforme

esquematizado na Figura 23

& . Minério Transicao ® <  Minério
Minério ® Minério @< Transicdo ®< Mineri
? Minério ® Estéril ® Minerio
Minério < Transicao ® Transicao ® < Minéri
@ Minério ® Esteril * Minério ® B — 0-Estéril

B — 1-Minério

Figura 23: Esquematizacédo da relagdo entre os subdominios das amostras (estéril e minério) e a definicdo de
subdominios no modelo de blocos (estéril, transicdo e minério).

Por fim, as amostras e o modelo de blocos receberam quatro novos campos,
relacionados aos quatro cenarios de definicdo de subdominios para estimativa, conforme

indicado na Tabela 7 e ilustrado na Figura 24.

Tabela 7: Os quatro cenarios de definicdo dos subdominios estéril, minério e de transigéo.

Campo Informacgéo

Amostras classificadas como 0 (estéril) ou 1 (minério) com base nos

ESTMIN_LITH litotipos; e blocos classificados como 0, 1 ou 2 (transic&o).

Amostras classificadas como 0 (estéril) ou 1 (minério) com base nos
ESTMIN_KM clusters do algoritmo K-means; e blocos classificados como 0, 1 ou
2 (transicao).

Amostras classificadas como 0 (estéril) ou 1 (minério) com base nos
ESTMIN_HC clusters do algoritmo Aglomerativo Hierarquico; e blocos
classificados como 0, 1 ou 2 (transicao).

Amostras classificadas como 0 (estéril) ou 1 (minério) com base nos
ESTMIN_GHC clusters do algoritmo Aglomerativo Hierarquico Geoestatistico; e
blocos classificados como 0, 1 ou 2 (transi¢ao).
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Figura 24: Vista em planta do modelo de blocos em cada um dos quatro cenarios de definicdo de subdominios
para estimativa.

5.4. Andlise Geoestatistica

O célculo dos variogramas experimentais foi realizado para o ferro nos cinco diferentes
cenarios, sempre com tamanho do passo igual a 40 metros. Em todos os célculos, utilizaram-
se 18 dire¢des (variagdo de 10° na dire¢cdo angular) e tolerancias angulares de 10° sem largura
méxima. Visto que cada furo é composto de uma Unica amostra, os variogramas downhole
ndo foram calculados e os efeitos pepita utilizados foram obtidos dos variogramas
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omnidirecionais. No cenério de dominio Unico, os eixos D1 e D2 possuem patamares menores
gue a variancia a priori e alcances proximos de 200 metros (Figura 25). O terceiro eixo
(perpendicular a xistosidade) tem continuidade inferior (<120 metros) e patamar acima da
variancia a priori. Os modelos teéricos de variograma e as elipsoides de continuidade de cada

subdominio por cenario podem ser observados nos Apéndice VI e Apéndice VII,

respectivamente.
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Figura 25: Variogramas experimentais e respectivos modelos tedricos ajustados do ferro no cenéario de dominio
Unico. (a) Omnidirecional, (b) direcéo 1, (c) direcdo 2 e (d) direcdo 3. Eixo vertical: variancia relativa a variancia a
priori (gamma).

5.5. Estimativas

Os volumes de busca foram configurados com as mesmas dimensfes e atitudes das
elipsoides de continuidade. Utilizou-se também minimo de 4 e maximo de 12 amostras para

a estimativa. Os blocos também foram discretizados trés vezes em cada eixo.
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O alinhamento das amostras na malha favoreceu a geracao de muitos pesos negativos
e a estimativa de teores negativos de ferro. Portanto, os pesos negativos foram corrigidos
igualando-os a zero e com o reajuste dos pesos positivos. Em cada cenario, blocos do
subdominio estéril foram estimados apenas com amostras do dominio estéril, utilizando-se a
mesma logica para o subdominio minério (Figura 27). Na estimativa dos blocos de transicéo,
foram interpoladas tanto as amostras do tipo estéril quanto as do tipo minério, e utilizados os

variogramas do cenério de dominio Unico.

45000 E 45000 E 45000 E

Dominio tinico Por litotipos

K-means

Aglomerativo
Hierarquico
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B — 637226473 |
B — 647336777
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Figura 26: Vista em planta do modelo de blocos com teores estimados de ferro em cada cenario.
5.6. Validacdo e Avaliacdo dos Efeitos do Agrupamento nas Estimativas

Na Tabela 8, verifica-se que todos 0os agrupamentos resultaram em estimativas com
menor diferenca entre a média amostral e estimada, mas que esta diferenca permanece muito
proxima da gerada pelo uso de um dominio Unico. Pelos histogramas de teores estimados
(Apéndice VIII), verifica-se que todas as definicdes de subdominios resultaram na estimativa
de duas populacdes estatisticas de ferro (histogramas bimodais), enquanto os cenarios de
dominio Unico e agrupamento pelo algoritmo GHC melhor preservaram a forma unimodal da

distribuicdo amostral.
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Tabela 8: Estatisticas descritivas dos teores de ferro nas amostras e nos modelos estimados em cada cenario,
destacados os valores minimo e maximo, média e variancia mais préximos do conjunto amostral.

Amostras Dominio Gnico Litotipos KM HC GHC

Minimo 3,08 18,29 12,75 23,12 9,74 12,29
Méaximo 67,67 66,25 66,06 66,12 66,21 66,59
Média 59,89 59,60 59,71 59,74 59,66 59,65
Variancia 28,62 13,77 17,97 19,29 17,88 18,41

Os erros obtidos com a validag@o cruzada sdo muito proximos a zero (sem viés) em

todos os cenarios, mas foi o cenario de agrupamento com o K-means que retornou 0 menor

erro médio e a menor variancia (Figura 28 e Apéndice IX). Consequentemente, o coeficiente

de correlacdo linear de Pearson deste cenario também é o maior observado (r = 0,836). Nota-

se que os coeficientes de correlagdo para os agrupamentos sado maiores devido ao efeito de

“afunilamento” (Apéndice IX-B) gerado pelas distribuicdes bimodais do ferro estimado.
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Figura 27: Histogramas dos teores de ferro (a) nas amostras e (b) resultantes da validacao cruzada; (c) histograma
dos erros e (d) disperséo entre os teores reais e as estimativas pontuais para o cenario do K-means.
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Os cenérios de agrupamento por litotipos, HC e GHC também apresentaram menor
variancia de erros e maiores coeficientes de correlacdo em relagcdo ao dominio Unico, embora
as diferencas sejam pouco significativas. Verifica-se também que os maiores erros se
concentram nos subdominios de estéril, devido a mistura de amostras de baixo teor de ferro
com amostras de alto teor de ferro e alta concentracdo de contaminantes. Para o K-means,
por exemplo, a variancia do erro no subdominio minério é igual a 3,429 (40% menor que a

variancia geral).

Pela andlise dos gréficos quantil-quantil (Apéndice X), observa-se que todos os métodos
se afastam da distribuicdo amostral nas duas extremidades, conforme o esperado pelo efeito
de suavizacado de estimativa. O cenario de dominio Unico é o que mais se afasta e o cenario
do K-means, o que mais se aproxima (Figura 29). Como consequéncia das formas dos
histogramas, os cenarios de dominio Unico e agrupamento com GHC sao 0s que mais se
aproximam de uma distribuicdo normal, enquanto os demais apresentam comportamento

bimodal. Na Figura 28, estdo destacados os intervalos de teores de maior semelhanca.

821 Dominio Gnico 8.0
62.5 4 62.5
60.0 60.0
57.5 57.5
[=] [=]
kS kS
£ 55.0 £ 55.0
B B
it 52.5 & 52.5
50.0 50.0
754" 415
45.0 45.0
Amostral Amostral
6501 GHC
62.5 4
60.0 1 y:
o 5751 F
'U ,'
- /
£ 55.0 4 3
5 P
52.5 1
50.0 4
475 1
45.0 1
45 50 55 60 65
Amostral

Figura 28: Gréaficos Quantil-Quantil entre os teores de ferro do conjunto amostral e as estimativas dos cenarios
com dominio Unico e com agrupamento por K-means e GHC.
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Na analise de deriva da Figura 29, pode-se ver como as acuracias das estimativas nos
diferentes cenarios sdo altas e muito proximas entre si, conforme indicado pelos erros
observados na validacdo cruzada, apresentando boa aderéncia com as médias moveis da
malha amostral. Ainda, a curva do GHC é a que melhor se adere a curva de estimativa com
dominio Unico em praticamente todas as fatias, 0 que provavelmente € um efeito da sua

propriedade de incluir a posi¢cao geogréafica dos pontos no critério de agrupamento.

Swath Plot - Médias Moveis do Ferro por Fatias

63 |

Amostras
mm Dominio dnico
I Por litotipo
62 1 | - KM
mm HC

@
& /\\ GHC
R 61 1
v \
@ \
B i
= 60 \ | 2 : :
: | \/ , aV
3 / ‘ //\\
@ L /
= 59 - A =

\ ‘. N

N
cg | -
5 10 15 20 P 30

Fatia

Figura 29: Médias moveis do ferro por fatias de orientagdo E-W e com espessura igual a 100 metros.

6. INTERPRETACAO E DISCUSSAO DOS RESULTADOS
6.1. Agrupamentos

O dendrograma da Figura 30 permite identificar que o maior nivel hierarquico do HC
distingue as duas populagdes de fosforo observadas na AED, tal como o maior nivel do GHC,
devido ao coeficiente de variagdo muito superior ao das demais variaveis. Portanto, para os
objetivos do estudo, a utilizacdo dos quatro clusters apontados pelo método do cotovelo do
algoritmo K-means também para os métodos hierarquicos foi essencial, visto que o uso de
dois clusters discretizaria as amostras apenas pelo teor de fésforo, mascarando a importancia
do ferro e ndo permitindo a sua reclassificacdo em minério ou estéril. Até mesmo o
agrupamento em trés clusters ndo atenderia aos objetivos do estudo, visto que neste caso o

cluster rico em ferro agruparia também as amostras ricas em alumina.
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Figura 30: Dendrograma do agrupamento realizado pelo método Ward do algoritmo Aglomerativo Hierarquico.
Altura = Distancia euclidiana entre os pares no espac¢o multivariado.

O cluster 0 é constituido por dois subgrupos na altura ~30 (Figura 30), 0s quais se
relacionam com os litotipos de minério. Enquanto o subgrupo denominado como “HA” na
Figura 30 é composto majoritariamente por amostras de Hematita A com significativa
presenca de HB e menor frequéncia de Itabirito Mole Anfibolitico e Hematita Alterada, o outro
subgrupo é composto em sua maioria por Hematita B e Itabirito Mole (SI) com a inclusao
menos expressiva de amostras dos demais litotipos. Conforme verificado na analise

exploratéria, os teores de HB séo todos intermediarios aos de HA e Sl (Apéndice | e Apéndice
.

Sob andlise de contato, o contato entre os subdominios estéril e minério gerados com o
K-means foi calculado como abrupto (hard boundary), enquanto os demais foram
consideradas transicionais (soft boundary) (Figura 31). Nota-se no grafico de andlise de
contato que os subdominios do K-means apresentam médias moveis inferiores as do HC para

o0 estéril (~55%) e semelhantes as do HC (~62%) para 0 minério, porém com menor variancia.
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Figura 31: Analises de contato entre os subdominios estéril (0) e minério (1) para (a) o algoritmo HC e (b) o

algoritmo K-means.

6.2. Analise Geoestatistica

O principal plano da elipsoide de continuidade do ferro, definido pelos eixos D1 218/45°

e D2 131/04° no cenario de dominio Unico, € paralelo a xistosidade S, do Sinforme Coérrego

das Flechas (Figura 32), flanco leste do Sinclinal Ouro Fino.

Figura 32: Elipsoide de continuidade do ferro no dominio Unico.

A andlise geoestatistica para os cenarios de agrupamento resultou em variogramas de

direcdes proximas as verificadas no dominio tnico (Apéndice VI) e, em geral, os eixos D1 e

D2 apresentam maiores alcances (Figura 33). Os variogramas experimentais, entretanto, séo

pior estruturados, fato que pode ser atribuido a reducdo da quantidade de amostras

disponiveis para analise. Embora todos os cenarios preservem o principal plano de

continuidade, pode-se observar no Apéndice VII que apenas o K-means apresenta D1 na

direcdo NE-SW (como no dominio unico).
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Figura 33: Variogramas experimentais e respectivos modelos tedricos na diregdo de maior continuidade do ferro
para (a) o dominio unico e (b) o subdominio de minério do HC. Eixo vertical: varidncia relativa a variancia a priori
(gamma).

6.3. Validagéo e Avaliagdo do Efeito do Agrupamento nas Estimativas

Embora os cenérios de agrupamento tenham apresentado resultados melhores que o
cenario de dominio Unico na validagdo cruzada, ressalta-se que o método néo reflete
exatamente a acuracia e precisdo das estimativas dos blocos. Entre os motivos, destacam-se
a diferenca de suporte (estimativa pontual versus estimativa de bloco discretizado), a posicao
relativa das amostras ao centroide de cada célula e entre as amostras; e 0 agrupamento dos
blocos em trés subdominios e das amostras em dois. Portanto, a validacdo cruzada néo
considera o subdominio de transi¢cdo, de modo que os erros e os coeficientes de correlacédo
para os cenarios de agrupamento podem ser ainda mais semelhantes aos do cenario de

dominio Unico do que o observado.

Embora o K-means e os demais métodos de agrupamentos apresentem melhores
resultados estatisticos para as estimativas, € o cenario de dominio Unico que retorna o
resultado espacial de menor variabilidade e a distribuicdo de teores estimados com maior
continuidade (Figura 34). Os resultados do cenario de agrupamento do GHC sdo os que mais
se assemelham ao uso de dominio Unico em todos os métodos de validacdo utilizados
(validagdo cruzada, andlise de deriva e comparacéo das estatisticas descritivas), além destes

cenarios apresentarem as elipsoides de continuidade mais parecidas.

Portanto, a estimativa com dominio Unico pode ser mais adequada para o planejamento
a longo prazo, no qual se faz importante a compreensao dos teores médios e sua distribuicéo
geral. J4 as estimativas com definicdo de subdominios devem ter aplicacdo mais Util no

planejamento de curto prazo por reduzir o efeito de suavizagédo, o que teria implicacdo na
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otimizacao do avanco da frente de lavra e no controle de teores da pilha de minério de acordo
com os estabelecidos para o Run of Mine da mina Capanema (Tabela 1).
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Figura 34: Comparacdo entre os teores das amostras e do modelo de blocos nos diferentes cenarios de
agrupamento no setor norte do deposito.

7. CONCLUSOES

Pode-se concluir que a andlise exploratéria de dados foi essencial para compreender a
malha utilizada e a distribuicdo dos teores no depdsito e como todas as variaveis se
correlacionam, o que permitiu a tomada de decisdes nas demais etapas, como: a dimensdo,
rotacdo e posicao do modelo de blocos, a escolha das variaveis-critério para o agrupamento
com analise de agrupamento, a realizacao do proprio agrupamento baseado nos litotipos e a
definicdo dos parametros de vizinhanca para estimativa.

Ainda, o uso do método do cotovelo para escolha da quantidade 6tima de agrupamentos
com o algoritmo K-means foi satisfatoria para os objetivos do estudo e adequada também
para os algoritmos aglomerativos hierarquicos. Os resultados de agrupamento de todos se
assemelharam, tanto estatistica quanto espacialmente, e distinguiram: um cluster com alto
teor de ferro e baixos teores de alumina e fésforo, dois clusters com alta concentracdo de
contaminantes e um cluster pobre em ferro. Apés a reclassificacdo dos clusters nos
subdominios minério ou estéril, verificou-se que o agrupamento manual dos litotipos também

retornou resultados semelhantes aos dos algoritmos.

A andlise geoestatistica revelou forte controle estrutural-litolégico na distribuicdo dos

teores de ferro, cujo plano de maior continuidade é paralelo a xistosidade S, do Sinforme
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Cérrego das Flechas, que corresponde ao corpo de minério. Este resultado é coerente com o
modelo genético de FFBs do tipo Lago Superior e com a evolucdo geoldgica do QF. A reducao
da quantidade de amostras disponiveis para andlise estrutural nos cenarios de subdominio

resultou em variogramas com maiores alcances, porém pior estruturados.

O agrupamento das amostras conferiu, no geral, maior acuracia e precisdo para as
estimativas de todos os cenarios de agrupamento em relagdo ao cenario de dominio Unico,
gue resultou no modelo de menor variabilidade pela suavizagdo mais expressiva dos teores
inferiores e superiores a ~57%. Destaca-se o K-means como método que retornou os
melhores resultados de validacédo, podendo ser considerado um método de alta eficacia na
discriminacao estatistica de clusters. Os ganhos em acuracia e precisdo, no entanto, foram
pequenos, 0 que se deve tanto pela baixa variabilidade natural do ferro, quanto pela alta
eficacia da krigagem ordinaria. Provavelmente, ganhos mais significativos seriam observados
com o0 uso de métodos que apresentam maior efeito de suavizagdo, como 0s nao
geoestatisticos ou mesmo a krigagem simples, nos casos em que ndo houver

estacionariedade de primeira ordem e/ou a média global estiver enviesada.

O resultado do algoritmo GHC foi 0 que mais se aproximou do uso de dominio Unico,
provavelmente por considerar as posicdes geograficas das amostras e ndo apenas as
relagbes estatisticas entre as substancias escolhidas. Sua insercdo em um software
apresenta grandes beneficios para os usuarios, tanto por dispensar o conhecimento de
linguagens de programagdo para realizar agrupamentos complexos e altamente
configuraveis, quanto por reunir a andlise de agrupamento e as demais etapas da avaliacéo
de recursos e reservas minerais em uma unica interface. Ressalta-se ainda a vantagem que
o algoritmo oferece de atribuir novas amostras a agrupamentos previamente definidos, sem a
necessidade de reclassificar todo o conjunto amostral ou recorrer a métodos externos como
a Andlise Discriminante Madaltipla, como aconteceria para o0s algoritmos K-means e

Aglomerativo Hierarquico.

Para a mina Capanema, ainda que os ganhos em acuréacia e precisao de estimativa ndo
justifiguem o tempo empregado para realizar a definicdo dos subdominios, conclui-se que os
métodos de agrupamento séo eficazes e podem ter Util aplicacdo em outros contextos de
avaliagdo de recursos e reservas minerais, 0 que deve ser melhor explorado, como: na
avaliacdo de recursos e reservas com malhas menos densas e/ou néo regulares, na avaliacdo
de substancias com alta variabilidade, em que se esperam contatos abruptos; e para modelos
de curto prazo, em que ha maior necessidade de detalhamento dos contrastes locais nas

estimativas de teores altos e baixos.
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8. CONSIDERACOES FINAIS

Com base nos resultados obtidos e tomadas de decisao realizadas ao longo do estudo,

recomenda-se para trabalhos futuros:

Vi,

A investigacdo dos métodos de agrupamento tradicionais (manuais) e por analise
de agrupamento em outros contextos, como em malhas pouco densas e/ou néo
regulares, para depdsitos de substancias heterogéneas ou para 0s proprios
contaminantes do ferro, de maior variabilidade;

Verificar se a transformagdo das varidveis-critério € mais adequada por
normalizacdo ou por padronizagdo para aplicar os algoritmos de agrupamento;

A remocéo dos outliers inseridos de maneira indesejada nos clusters de maior
interesse pelos algoritmos de agrupamento, atribuindo-os a outros grupos;
Investigar as diferencas entre os algoritmos de agrupamento KM, HC e GHC para
furos que contenham mais de uma amostra, visto que o GHC considera as
distancias espaciais e, neste caso, devera apresentar grupos mais continuos;
Realizar o agrupamento com o algoritmo GHC com outras configura¢des que néo
a padréo do software Isatis.neo®, como a atribuicdo de diferentes pesos para as
variaveis-critério escolhidas, a insercdo dos litotipos como critério categoérico e
principalmente a configuracéo de uma elipsoide de continuidade que corresponda
aos modelos tedricos de variograma do ferro e 0 campo geométrico em questao;
Tendo em vista a geometria do Sinforme Coérrego das Flechas e suas dobras
parasitas, investigar a relevancia de se considerar anisotropias dinamicas para

realizar as estimativas.
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APENDICE | - ESTATISTICAS DESCRITIVAS POR LITOTIPO

Apéndice I-A) Estatisticas descritivas de ferro nos dados validados e tratados.

Medida HA HB SI SIA SIP WH
Quantidade 2065 926 898 170 1202 1458
Minimo 43,70 59,65 50,47 35,98 3,08 26,97
Maximo 67,67 64,10 59,99 63,90 59,68 65,57
Média 64,55 61,67 57,97 59,97 51,11 60,59
Mediana 64,46 61,78 58,01 60,64 52,23 61,44
Variancia 1,13 0,80 1,59 9,37 22,56 9,97
Desvio Padréo 1,06 0,89 1,26 3,06 4,75 3,16
Coef. de Variagéo 0,02 0,01 0,02 0,05 0,09 0,05
Assimetria -3,38 -0,20 -0,43 -3,55 -3,39 -3,33
Curtose 70,57 -1,11 0,46 21,75 24,27 22,01
Apéndice I-B) Estatisticas descritivas de alumina nos dados validados e tratados.
Medida HA HB Sl SIA SIP WH
Quantidade 2065 926 898 170 1202 1458
Minimo 0,02 0,03 0,00 0,21 0,04 0,15
Maximo 4,05 3,57 11,51 8,46 3,62 20,20
Média 1,28 0,91 0,73 2,18 0,65 3,25
Mediana 1,27 0,82 0,61 1,89 0,51 2,86
Variancia 0,28 0,20 0,35 1,83 0,18 2,31
Desvio Padréao 0,53 0,44 0,60 1,35 0,42 1,52
Coef. de Variacéo 0,42 0,49 0,81 0,62 0,65 0,47
Assimetria 0,24 0,84 10,25 1,45 1,85 3,52
Curtose -0,27 1,18 166,52 3,03 5,25 25,23

53



Apéndice I-C) Estatisticas descritivas de fésforo nos dados validados e tratados.

Medida HA HB Sl SIA SIP WH
Quantidade 2065 926 898 170 1202 1458
Minimo 0,00 0,00 0,00 0,00 0,00 0,00
Maximo 6,43 4,41 4,49 7,57 3,25 10,61
Média 0,12 0,10 0,10 0,59 0,06 0,15
Mediana 0,06 0,05 0,05 0,09 0,04 0,08
Variancia 0,27 0,13 0,16 2,98 0,05 0,55
Desvio Padrdo 0,52 0,35 0,40 1,72 0,22 0,74
Coef. de Variacao 4,26 3,60 4,00 2,91 3,47 4,78
Assimetria 8,21 7,96 7,73 3,19 11,62 10,98
Curtose 70,41 67,50 62,36 8,50 140,85 125,10
Apéndice I-D) Estatisticas descritivas de silica nos dados validados e tratados.
Medida HA HB Sl SIA SIP WH
Quantidade 2065 926 898 170 1202 1458
Minimo 0,00 0,00 0,00 0,00 0,00 0,00
Maximo 8,53 1290 20,23 36,85 93,30 46,57
Média 2,49 7,43 10,51 4,42 23,88 2,75
Mediana 2,01 7,65 13,60 3,05 22,58 1,59
Variancia 2,66 5,63 7,38 18,74 49,96 12,28
Desvio Padréo 1,63 2,37 2,72 4,33 7,07 3,50
Coef. de Variacao 0,66 0,32 0,20 0,98 0,30 1,28
Assimetria 0,99 -0,42 -1,48 3,34 2,89 4,63
Curtose 0,19 -0,10 5,84 18,38 21,85 33,01
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Apéndice I-E) Estatisticas descritivas de PPC nos dados validados e tratados.

Medida HA HB Sl SIA SIP WH
Quantidade 2065 926 898 170 1202 1458
Minimo 1,22 1,06 0,80 2,35 0,00 1,57
Maximo 8,60 8,10 11,24 13,79 6,53 14,37
Média 3,73 3,08 2,36 7,18 2,03 6,97
Mediana 3,71 2,78 2,13 7,10 1,85 6,67
Variancia 1,44 1,71 0,96 3,88 0,69 4,80
Desvio Padrdo 1,20 1,31 0,98 1,97 0,83 2,19
Coef. de Variacao 0,32 0,42 0,41 0,27 0,41 0,31
Assimetria 0,25 1,17 2,26 059 1,43 0,40
Curtose -0,54 1,22 10,64 0,87 3,25 0,08
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APENDICE Il - BOXPLOTS POR LITOTIPO
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Apéndice Il) Boxplots dos teores de (a) ferro, (b) alumina, (c) fésforo e (d) silica e (e) da perda por calcinacédo do
banco de dados validado e tratado.
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APENDICE lIl - HISTOGRAMAS

Apéndice Ill) Histograma dos teores de ferro, alumina, fésforo, silica e da porcentagem de PPC para (a) o banco

de dados validado e (b) o banco de dados validado e tratado.
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APENDICE IV — MALHA COM LEGENDAS DE TEORES E PPC
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Apéndice IV-A) Malha com legenda dos teores de ferro em planta e em perspectiva.
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Apéndice IV-B) Malha com legenda de teor de alumina em planta e em perspectiva.
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Apéndice IV-C) Malha com legenda de teor de fosforo em planta e em perspectiva.

61



0

45000 E

43500 E 44000 E 44500 E
(2] - =
g . o
o o =)
o A ga
= L :.: N w
o : & ? s, .:.' A pd
(=] o A
D . ..: (3 O
8 by ?;:o §
z D oo A ©

"o o o o e
Se%%e" o'}
- % %, >
3 i 2
o -- )
b= LS 5, x L] T3]
z Foogtost S e o
“ ~E:. e .
b eyt
o b o ol Tes =
-‘D“I g oo, N o
o S
e * : 0 see .8 E
= * o o, :'i o]
Bt 0, o

@ : e z
X QR 3 2 =1
8 ’ " :" ﬁlll %
z L b

0 250 500 750m S %
@ — H L % =
ooy | 2
o o
z 8

43500 E 44000 E 44500 E

T —

Apéndice IV-D) Malha com legenda de teor de silica em planta e em perspectiva.
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Apéndice IV-E) Malha com legenda de PPC em planta e em perspectiva.
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APENDICE V — GRAFICOS DE DISPERSAO

Apéndice V) Gréficos de disperséo entre todas as variaveis numéricas (Fe, Al20s, P, SiO2 e PPC) com legenda

de litotipos.
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APENDICE VI - MODELOS DE VARIOGRAMA DO FERRO

Apéndice VI-A) Modelos tedricos de variograma dos subdominios estéril e minério no cenario de agrupamento

por litotipos.
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Apéndice VI-B) Modelos tedricos de variograma dos subdominios estéril e minério no cenério de agrupamento
do K-means.

Gamma (29.938)

1.24

1.0

0.8

0.6

0.4

0.2

0.0

KM - Dominio Estéril - Fe

T T
50 100 150

T
200

T T
250 300
Distancia {(m)

Efeito pepita:

0.38

Diregdo 1: 105/-22°
Diregéo 2: 004/-26°

Diregdo 3: 050/55°

Estrutura 1
Estrutura 2
Estrutura 1
Estrutura 2
Estrutura 1
Estrutura 2

T
350

0.16
031
0.13
0.28
0.01
0.77

T
400

T
450

129
560
93
466
97
135

T
500

‘ Varidncia Alcance

Gamma (4.385)

KM - Dominio Minério - Fe

1.2

1.04

0.684

0.6

0.4

0.24

0.0

T T T
0 50 100 150

T T
200 250
Distdncia (m)

Efeito pepita: 0.49

Diregdo 1: 311/04°
Diregdo 2: 218/45°

Diregdo 3: 045/45°

Estrutura 1
Estrutura 2
Estrutura 1
Estrutura 2
Estrutura 1
Estrutura 2

T
300

0.24
0.19
0.28
0.25
0.15
0.47

T
350

71
250
139
452

45

86

T
400

| Varidncia Alcance



Apéndice VI-C) Modelos tedricos de variograma dos subdominios estéril e minério no cenario de agrupamento
do Aglomerativo Hierarquico.
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Apéndice VI-D) Modelos tedricos de variograma dos subdominios estéril e minério no cenario de agrupamento
do Aglomerativo Hierarquico Geoestatistico.

Gamma (31.840)

GHC - Dominio Estéril - Fe

GHC - Dominio Minério - Fe

1.44
0.8
1.24 071
1.0 0.6
g
& 05
0.84 o
=
-]
E 0.4
0.6 5
o
0.3
0.44
0.2
0.24
0.1
0.0 T T T T 0.0 T T T T T T T —>
0 50 100 150 200 20 40 60 80 100 120 160 180
Distancia (m) Distancia (m)
Efeito pepita: 0.11 ‘ Variancia Alcance Efeito pepita: 0.11 ‘ Varidncia Alcance
Estrutura 1 0.36 108 Estrutura 1 0.33 59
Diregdo 1:311/02° Direcdo 1: 311/04°
; 02 gruturaz 037 238 e 0 rutura2 036 193
Estrutura 1 0.01 45 Estrutura 1 0.16 43
Diregdo 2: 219/30° Direcdo 2: 218/45°
g / Estrutura 2 0.68 231 e / Estrutura 2 0.38 138
Estrutura 1 0.13 114 Estrutura 1 0.36 55
Diregdo 3: 045/60° Diregdo 3: 045/45°
5 /60" w2 110 124 et /45" qrutura2 049 88

67



APENDICE VII — ELIPSOIDES DE CONTINUIDADE

Apéndice VII) Elipsoides de continuidade do ferro no dominio Gnico e nos subdominios de minério dos cenarios
de agrupamento.
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APENDICE VIII - HISTOGRAMAS DOS TEORES ESTIMADOS DE FERRO

Apéndice VIII) Histogramas dos teores de ferro das amostras e estimados em todos os cenarios.
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APENDICE IX — VALIDAGOES CRUZADAS

Apéndice IX-A) Histogramas das diferencgas entre os teores reais e as estimativas pontuais (erro).
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Apéndice IX-B) Gréfico de dispersado entre os teores reais e as estimativas pontuais.
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APENDICE X — GRAFICOS QUANTIL-QUANTIL

Apéndice X) Gréficos Quantil-Quantil entre o conjunto amostral e os teores de ferro estimados em cada cenario.
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