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RESUMO 

Algoritmos de análise de agrupamento têm sido testados e continuamente adaptados para 

realizar a definição de subdomínios para estimativa de recursos e reservas minerais com 

critérios multivariados, como o K-means (KM) e o Aglomerativo Hierárquico (HC), elaborados 

para variáveis não regionalizadas; e o Aglomerativo Hierárquico Geoestatístico (GHC), que 

considera as relações geoestatísticas entre as amostras. No presente estudo, 6.719 furos de 

perfuratriz do tipo rockdrill da mina de ferro Capanema, localizada na porção centro-leste do 

Quadrilátero Ferrífero (Minas Gerais), foram submetidos a quatro diferentes métodos de 

agrupamento para avaliar os efeitos da definição de subdomínios na estimativa dos teores de 

ferro. Os agrupamentos foram realizados manualmente (primeiro cenário) com base nos 

litotipos da mina; e pela aplicação dos algoritmos KM, HC e GHC (segundo a quarto cenários) 

com base nos teores de ferro, alumina e fósforo dos furos. A análise geoestatística das 

amostras nos cinco cenários (incluso o de domínio único) revelou forte controle estrutural-

litológico na distribuição dos teores de ferro, pois os planos principais das elipsoides de 

continuidade são paralelos à xistosidade S2 do Sinforme Córrego das Flechas, que abrange 

o depósito. O agrupamento das amostras conferiu, no geral, maior acurácia e precisão para 

as estimativas com krigagem ordinária em relação ao cenário de domínio único, embora com 

pequena diferença. Destaca-se o agrupamento do algoritmo K-means como o cenário que 

apresentou os melhores resultados de estimativa, verificados na validação cruzada (maior 

coeficiente de correlação linear e menores média e variância dos erros) e na comparação de 

suas estatísticas descritivas com as do conjunto amostral (menor alteração da média e da 

variância dos teores de ferro nas amostras). A estimativa sem agrupamento ocasionou o maior 

efeito de suavização pela superestimativa e subestimativa de teores baixos e altos, 

respectivamente, o que resultou no modelo com a distribuição mais homogênea de teores. 

Para a mina Capanema, ainda que os pequenos ganhos em acurácia e precisão de estimativa 

conferidos pela definição de subdomínios não justifiquem os efeitos negativos observados e 

o tempo empregado, os métodos de agrupamento podem ter útil aplicação nos contextos em 

que há necessidade de maior detalhamento dos contrastes locais de teores, como na 

avaliação de substâncias heterogêneas e modelos de curto prazo.   
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ABSTRACT 

Cluster analysis algorithms have been tested and continually adapted to define subdomains 

for estimating mineral resources and reserves based on multivariate criteria, such as K-means 

(KM) and Agglomerative Hierarchical Clustering (HC), developed for non-regionalized 

variables; and the Geostatistical Hierarchical Clustering (GHC), which considers the 

geostatistical relationships between samples. In the present study, 6,719 rockdrill-type 

samples from the Capanema iron mine, located in the east-central portion of Quadrilátero 

Ferrífero (Minas Gerais), were submitted to four different subdomains definition methods to 

asses its effects on the estimates for iron. The subdomains definitions were performed 

manually (first scenario) based on the mine's lithotypes, and by cluster analysis with KM, HC 

and GHC algorithms (second to fourth scenarios) based on the iron, phosphorus and alumina 

sample contents. The geostatistical analysis of the samples in all five scenarios (single-domain 

included) revealed a strong sctructural-lithological control in the distribution of iron contents, 

as the main planes of the continuity ellipsoids are parallel to the S2 schistosity of Córrego das 

Flechas synform, which comprises the deposit. The clustering of samples provided, in general, 

slightly higher accuracy and precision for ordinary kriging estimates in relation to the single-

domain scenario, but. The clustering of K-means algorithm stands-out as the scenario that 

presented the best estimation results, verified by cross validation (higher linear correlation 

coefficient and smaller mean and variance of errors) and by comparison of its descriptive 

statistics with those of the dataset (smallest change in the iron grades mean and variance). 

The single-domain estimate caused the greatest smoothing effect by the overestimation and 

underestimation of low and high grades, respectively, which resulted in the model with the 

most homogeneous distribution of grades. For the Capanema mine, even though the small 

gains in accuracy and precision of estimation conferred by the definition of subdomains do not 

justify the time taken, the grouping methods can be usefully applied in contexts in which there 

is a need for greater detailing of the local contrasts of contents, as in the evaluation of 

heterogeneous substances and short-term models. 
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1. INTRODUÇÃO 

A avaliação de recursos e reservas minerais é composta pela quantificação de volume, 

massa e teores de bens minerais, bem como na identificação das geometrias e extensões dos 

corpos mineralizados no espaço tridimensional (Yamamoto, 2001). Para isso, a avaliação se 

baseia na teoria de amostragem, que se refere ao ato de selecionar amostras de forma que 

estas representem o fenômeno espacial estudado, permitindo não só sua compreensão, como 

também a inferência de informações nos pontos não amostrados, o que é possibilitado pelo 

conceito de variável regionalizada (Matheron, 1963). Os teores de uma substância de 

interesse são tidos como uma variável regionalizada, pois apresentam simultaneamente uma 

propriedade estruturada, variando em função de sua posição no espaço; e uma propriedade 

aleatória, possuindo alguma imprevisibilidade natural (Sinclair & Blackwell, 2004).  

Uma variável regionalizada pode ser considerada estacionária quando sua distribuição 

de frequência é constante em todo o domínio, condição raramente observada na natureza 

(Goovaerts, 1997). Alternativamente, para o contexto de recursos e reservas minerais, utiliza-

se a decisão ou escolha de estacionariedade, também denominada como hipótese intrínseca 

ou de quasi-estacionariedade, que requer apenas que a variação espacial seja estacionária 

de segunda ordem em todo o domínio (Goovaerts, 1997; Sinclair & Blackwell, 2004). A 

definição de subdomínios pode ser fundamentada em um ou mais critérios, entre os quais se 

destacam os geológicos, estatísticos e técnico-operacionais, a depender das características 

da ocorrência mineral e as necessidades do projeto. Para realizar estimativas com métodos 

geoestatísticos, por exemplo, a divisão do domínio tem como principal finalidade satisfazer a 

hipótese intrínseca. Nesse contexto, uma série de algoritmos de análise de agrupamento 

(cluster analysis) tem sido testada e continuamente adaptada para realizar a definição de 

subdomínios com critérios multivariados (Faraj & Ortiz, 2021). Enquanto a maioria dos 

algoritmos foi elaborada para variáveis não regionalizadas, como o K-means e o Aglomerativo 

Hierárquico; também há aqueles que consideram as relações geoestatísticas entre as 

amostras, como o Aglomerativo Hierárquico Geoestatístico (Romary et al., 2015; Fouedjio, 

2016; Moreira et al., 2020; Faraj & Ortiz, 2021). 

Neste estudo, diferentes métodos de definição de subdomínios foram utilizados para a 

estimativa dos teores de ferro da mina Capanema, localizada entre os municípios de Santa 

Bárbara, Itabirito e Ouro Preto. Operada de 1982 a 2003 pela Minas da Serra Geral S.A. 

(MSG), a campanha utilizada consiste em 8.345 furos de perfuratriz do tipo rockdrill obtidos 

pela empresa, com classificação de litotipos e teores de ferro, sílica, fósforo e alumina, além 

da porcentagem de perda por calcinação (PPC). Os furos foram submetidos a um 

agrupamento tradicional, baseado nos litotipos, e à análise de agrupamento com os algoritmos 

K-means, Aglomerativo Hierárquico e Aglomerativo Hierárquico Geoestatístico; para 

comparar os efeitos da definição de subdomínios nas estimativas dos diferentes cenários.  



11 
 

2. METAS E OBJETIVOS 

Este trabalho teve como objetivo a estimativa dos teores de ferro da mina Capanema, 

no Quadrilátero Ferrífero, com diferentes métodos de definição de subdomínios para 

estimativa, visando comparar e avaliar os efeitos de cada método nos resultados. O estudo 

também teve como metas comparar a eficiência dos algoritmos de análise de agrupamento 

(cluster analysis) para o banco de dados da mina e discutir seus potenciais usos. 

 

3. LEVANTAMENTO BIBLIOGRÁFICO 

3.1. Contexto Geológico Regional 

A mina de ferro Capanema está localizada na porção centro-leste do Quadrilátero 

Ferrífero (QF) (Figura 1), Minas Gerais, borda sul do Cráton São Francisco.  

 

Figura 1: Mapa geológico do Quadrilátero Ferrífero e localização da mina Capanema. Modificado do banco de 
dados da CPRM (2004). 
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3.1.1.  Litoestratigrafia do Quadrilátero Ferrífero 

De acordo com Noce (1995) e Dardenne & Schobbenhaus (2001), a evolução do QF 

pode ser sintetizada em três eventos: o ciclo paleoarqueano Pré-Rio das Velhas, o ciclo 

neoarqueano Rio das Velhas e o ciclo paleoproterozoico Transamazônico. 

Ciclo Paleoarqueano pré-Rio das Velhas 

O primeiro ciclo compreende o retrabalhamento de crosta mais antiga em sucessivos 

eventos tectono-termais entre 2,85 e 3,30 Ga, o qual resultou na formação dos complexos 

tonalíticos-trondjemíticos-granodioríticos (TTG) do embasamento (Figura 2), expostos em 

estruturas dômicas (Noce, 1995).  

Ciclo Neoarqueano Rio das Velhas 

O ciclo neoarqueano se relaciona à formação do Supergrupo Rio das Velhas entre 2,78 

e 2,70 Ga, uma sequência metavulcanossedimentar do tipo greenstone belt (Noce, 1995; 

Dardenne & Schobbenhaus, 2001). O Supergrupo Rio das Velhas é composto pelos grupos 

Quebra Osso, Nova Lima e Maquiné (Figura 2), resultantes da aglutinação de blocos 

continentais e fechamento oceânico. O Grupo Quebra Osso, unidade basal, é formado por 

rochas metakomatiíticas de fácies xisto verde com estruturas do tipo pillow lava e texturas 

spinifex, intercaladas com metassedimentos químicos e serpentinitos. O Grupo Nova Lima é 

constituído por rochas metassedimentares clásticas, químicas e vulcanoclásticas, além de 

metavulcânicas félsicas e máficas, que se associam a Formações Ferríferas Bandadas (FFBs) 

do tipo Algoma. Os filitos grafitosos deste grupo hospedam os principais depósitos auríferos 

do QF, do tipo orogênico, como os depósitos de classe mundial Morro Velho e Cuiabá 

(Dardenne & Schobbenhaus, 2001). O Grupo Maquiné, porção superior do greenstone belt, 

corresponde a uma sequência metassedimentar de conglomerados, quartzitos, filitos e xistos.  

Ciclo Transamazônico 

O Ciclo Transamazônico, de 2,6 a 2,0 Ga, consiste de uma série de processos 

sedimentares, tectônicos e magmáticos que resultaram na formação do Supergrupo Minas, 

em discordância com o Supergrupo Rio das Velhas e os complexos TTG (Noce, 1995). Da 

base para o topo, o Supergrupo Minas é composto pelas sequências fluviais deltaicas e 

marinhas plataformais dos grupos Caraça, Itabira e Piracicaba, pelo grupo marinho imaturo 

Sabará (Rosière & Chemale Jr, 2000), conforme indicado na coluna estratigráfica da Figura 

2. Além do início da sedimentação da Bacia Minas, o Grupo Caraça registra a gradação dos 

metaconglomerados e quartzitos da Formação Moeda para os metapelitos da Formação 

Batatal (Dardenne & Schobbenhaus, 2001). Em contato transicional com o Grupo Caraça, o 

Grupo Itabira (2,52 a 2,42 Ga) corresponde ao maior horizonte de sedimentos químicos do 
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Supergrupo Minas e é subdividido nas formações Cauê e Gandarela, que se intercalam 

horizontal e verticalmente (Rosière & Chemale Jr, 2000).  

 

Figura 2: Coluna estratigráfica do Quadrilátero Ferrífero. (1) Complexos granito-gnáissicos do embasamento, (2) 
Rochas ultramáficas, (3) Rochas máficas, (4) Unidade químico-clástica, (5) Unidade clástica, (6) Tonalitos, (7) 
Conglomerados e quartzitos da Fm. Moeda, (8) Filitos carbonosos da Fm. Batatal, (9) Itabiritos da Fm. Cauê, (10) 
Dolomitos da Fm. Gandarela, (11) Quartzitos e filitos, (12) Conglomerados e filitos, (13) Conglomerados e 
quartzitos, (14) Sills e diques de diabásio. (Dardenne & Schobbenhaus, 2001) 

A Formação Cauê é caracterizada por FFBs metamórficas, deformadas e oxidadas 

denominadas itabiritos, além de filitos e dolomitos ferruginosos. De origem sedimentar (tipo 
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Lago Superior), os itabiritos contêm de 250 a 300 m de espessura e compõem os principais 

depósitos de ferro de alto teor do Quadrilátero Ferrífero, como as minas Águas Claras, Alegria 

e Capanema (Dardenne & Schobbenhaus, 2001). Rosière & Chemale Jr (2000) classificam 

os itabiritos em três tipos composicionais, todos contendo hematita e martita como fases 

dominantes e com kenomagnetita subordinada. Os tipos são (a) quartzo-itabirito, o mais 

comum do QF, que possui o quartzo como um de seus componentes mineralógicos principais, 

tanto nos níveis claros do microbandamento quanto em veios sacaroidais; (b) itabiritos 

dolomíticos, os quais apresentam bandas de Fe-dolomita, quartzo e óxidos de ferro, com ou 

sem calcita, clorita e anfibólio como acessórios; e (c) os itabiritos anfibolíticos, que apresentam 

anfibólios de composição variada, como grunerita-cummingtonita, tremolita e actinolita.  

A Formação Gandarela é composta por metadolomitos com itabiritos e filitos 

subordinados e tem seu topo marcado por discordância erosiva com o Grupo Piracicaba 

(Figura 2), predominantemente clástico. Os sedimentos do Grupo Piracicaba representam a 

alternância de ciclos transgressivos em um período de expansão oceânica (Noce, 1995; 

Dardenne & Schobbenhaus, 2001) e também apresentam discordância regional com a 

unidade sobreposta, o Grupo Sabará. Topo do Supergrupo Minas, o Grupo Sabará marca a 

colisão com o arco Transamazônico, tratando-se de uma sequência do tipo flysch (pré a sin-

orogênica) de 2,12 a 2,03 Ga (Noce, 1995).  

Após um período de estabilidade tectônica, inicia-se uma fase extensional por volta de 

1,75 Ga (rifte Espinhaço). O Grupo Itacolomi e o Supergrupo Espinhaço correspondem a 

depósitos continentais correlatos a vulcanismo ácido continental e intrusões graníticas 

anorogênicas (Dardenne & Schobbenhaus, 2001). 

3.1.2.  Sinclinal Ouro Fino 

A mina Capanema encontra-se na porção sul do Sinclinal Ouro Fino (Figura 3), cujo 

modelo mais recente foi proposto por Franco & Endo (2004). De acordo com os autores, o 

sinclinal corresponde a uma dobra antiformal, reclinada, de eixo WNW-ESE sub-horizontal e 

vergência para sul, desconectada do Sinclinal Gandarela pela Falha do Fundão.  

O Sinforme Córrego das Flechas apontado no perfil da Figura 3 é a estrutura dominante 

da mina e corresponde à segunda fase deformacional descrita pelos autores, na qual foram 

geradas dobras de xistosidade S2 de direção NW-SE e caimento moderado para NE, 

posteriormente sobrepostas pelos eventos D3 e D4. 
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Figura 3: Mapa geológico do Sinclinal Ouro Fino e perfil geológico A-B seccionando a cava atual da mina 
Capanema. (Franco & Endo, 2004) 

3.1.3.  Aspectos econômicos da mina Capanema 

Após sua descoberta em meados da década de 60, a mina Capanema foi operada de 

1982 a 2003 pela Minas da Serra Geral S.A. (MSG), uma joint venture da Companhia Vale do 

Rio Doce (CVRD) em associação com empresas japonesas, como a Kawasaki Steel 

Corporation. A maior parte da produção da MSG (cerca de 10,5 Mtpa) era adquirida pela 

CVRD, a qual realizava o seu beneficiamento na mina de Timbopeba, a 11 km de distância, 

e a comercialização do minério (Vale, 2012).  

Em dezembro de 2020, a CVRD obteve as licenças para retomar as operações da mina 

com o Projeto Capanema Umidade Natural e, em novembro do mesmo ano, começou a 

comercialização do minério que havia sido extraído e ainda se encontrava estocado na mina 

desde sua paralisação em 2003 (Notícias Vale, 2021). Estima-se que a produção se inicie no 

segundo semestre de 2023, com capacidade média anual de 18 Mt e vida útil de 7 anos. Nos 

primeiros 5 anos, no entanto, essa capacidade será de 14 Mtpa, pois a operação se 
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concentrará no reaproveitamento da pilha de estéril denominada WH, de hematita alterada 

enriquecida em alumina e fósforo, sem a geração de rejeito (Formulário de Referência Vale, 

2021). 

Em 31 de dezembro de 2020, as reservas totais de minério de ferro do Complexo 

Mariana (no qual a mina Capanema está inserida) correspondiam a 1.810 Mt a um teor médio 

de 46,7% (reservas provadas de 727Mt @ 45% e prováveis de 1.083 Mt @ 47,9%) (Relatório 

Anual Vale, 2020). Os recursos obtidos por Rocha (1999) para a mina Capanema 

correspondem a cerca de 139 Mt a um teor médio de 62,30%, levando-se em consideração 

os teores médios de corte da mina. Na Tabela 1, são apresentados os teores de corte para o 

minério e para o Run of Mine (ROM) por faixa granulométrica. O ROM do Complexo Mariana 

é processado por britagem padrão, classificação e concentração para produção de sinter feed, 

minério granulado e pellet feed nas usinas de beneficiamento (Relatório Anual Vale, 2020).  

Tabela 1: Teores de corte máximos e mínimos para o minério e para o ROM da mina Capanema por faixa 
granulométrica. (Rocha, 1999) 

 

3.2. Análise de Agrupamento (Cluster Analysis) 

Análise de agrupamento consiste num conjunto de técnicas que visam distribuir as 

observações em grupos (clusters) de modo que a semelhança entre elas seja a maior possível 

dentro de cada grupo e a menor entre grupos. Entre os métodos mais utilizados, podem-se 

citar os algoritmos não supervisionados K-means (MacQueen, 1967) e Aglomerativo 

Hierárquico (Sokal & Sneath, 1963). Para ambos os métodos, a escolha das variáveis é 

decisiva e deve-se favorecer as que tenham alto poder de discriminação e sejam relevantes 

ao problema (James et al., 2013). 

3.2.1.  Algoritmo K-means 

Na primeira iteração, o algoritmo distribui as amostras de maneira aleatória entre uma 

quantidade k de grupos predefinida pelo usuário (Figura 4a) e calcula as médias (centroides) 
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de cada grupo (Figura 4b). As amostras são então redistribuídas de modo que a soma do 

quadrado das distâncias entre amostras e centroides seja mínima (within-clusters-sum-of-

squares) (Figura 4c) (James et al., 2013; Kassambara, 2017).  

 

Figura 4: Ilustração da primeira iteração do algoritmo K-means. (a) Distribuição aleatória das amostras em 3 
grupos, (b) cálculo dos centroides dos agrupamentos e (c) redistribuição das amostras de acordo com a posição 
dos centroides. (James et al., 2013)  

Em seguida, a posição dos centroides é recalculada (Figura 5a) e as amostras são 

novamente redistribuídas para que pertençam ao cluster de centroide mais próximo. Essa 

nova inclusão e remoção de amostras nos clusters alteram suas médias, alterando também a 

posição dos centroides. Este processo de cálculo dos centroides e redistribuição das amostras 

se repete até que as médias dos clusters se estabilizem (Figura 5b). 

 

Figura 5: Ilustração de mais iterações do algoritmo K-means. (a) Os centroides são reposicionados de acordo com 
as amostras a eles atribuídas na primeira iteração e (b) o processo se repete n vezes até atingir a estabilização 
dos centroides. (James et al., 2013) 

Além da quantidade k predefinida de clusters, o agrupamento realizado pelo K-means 

também depende da distribuição aleatória da primeira iteração (James et al., 2013; 

Kassambara, 2017). A cada execução do algoritmo, portanto, o resultado final obtido é 

a b 

a b c 

Agrupamento aleatório Cálculo dos centroides Reagrupamento  

Cálculo dos centroides Resultado final 
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diferente. Na literatura, recomenda-se executá-lo mais de uma vez e observar qual padrão de 

agrupamento é mais frequente (James et al., 2013) e, ainda, há soluções que buscam otimizar 

os agrupamentos e retornar resultados mais consistentes, como o K-means++ de Arthur & 

Vassilvitskii (2007).  

Um dos métodos para a escolha da quantidade de agrupamentos é denominado método 

do cotovelo e consiste na análise da soma total do quadrado das distâncias (inércia) pela 

quantidade de clusters (Figura 6). Os pontos de inflexão (elbow points) do gráfico podem ser 

considerados como quantidades adequadas de clusters, pois evitam tanto o agrupamento de 

amostras muito distintas em poucos grupos, quanto o agrupamento de poucas amostras em 

muitos grupos (Kassambara, 2017; Yuan & Yang, 2019).  

 

Figura 6: Exemplo de gráfico da inércia total pela quantidade de clusters. (Yuan & Yang, 2019) 

3.2.2.  Algoritmo Aglomerativo Hierárquico 

O agrupamento hierárquico pode ser subdividido nos tipos aglomerativo e divisivo, que 

se caracterizam pela estruturação dos dados em uma hierarquia multiníveis, geralmente 

representada por dendrogramas (Figura 7) (Kassambara, 2017). Para isso, cada observação 

é tratada como um cluster e os clusters são sucessivamente unidos em pares até que haja 

um único grupo (raiz). Os algoritmos aglomerativos possuem diferentes métodos para 

determinar a semelhança entre os pares de clusters, como o método Ward, um dos mais 

utilizados. O método Ward assume que cada grupo é representado por um centroide, 

realizando a união dos pares com o objetivo de minimizar a variância desses centroides, de 

modo semelhante ao K-means (Kassambara, 2017).  

Duas vantagens dos métodos hierárquicos sobre o K-means são: dispensar a 

predefinição da quantidade de clusters e retornar o mesmo resultado sempre que executado 

para determinados dados. Para obter k grupos, o usuário deve escolher o nível hierárquico 
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correspondente, conforme ilustrado na Figura 7b. Geralmente, o nível hierárquico (ou altura) 

dos dendrogramas corresponde a uma medida relativa da proximidade entre os grupos ou, 

como no caso da Figura 7b, à distância euclidiana entre os pares no espaço multivariado.  

O K-means, por sua vez, é menos sensível a outliers e sua evolução é dinâmica, ou 

seja, um ponto inicialmente inserido em um cluster pode ser atribuído a outro ao longo das n 

iterações (James et al., 2013; Kassambara, 2017). 

 

Figura 7: Representação de (a) dados estruturados em uma hierarquia multiníveis (dendrograma) e (b) seleção 
de um nível hierárquico para gerar quatro clusters distintos. (Kassambara, 2017) 

Para que os algoritmos K-means e Aglomerativo Hierárquico considerem a posição 

espacial de amostras regionalizadas, é possível inserir as coordenadas geográficas como 

variáveis adicionais. Entretanto, neste caso, os algoritmos não distinguem o espaço 

geográfico do multivariado e, por isso, frequentemente desconsideram ou a continuidade 

espacial ou a consistência estatística de cada domínio, honrando apenas um dos dois 

aspectos (Romary et al., 2015; Fouedjio, 2016). Autores como Romary et al. (2015) e Fouedjio 

(2016) propuseram metodologias para incluir a dependência espacial de variáveis 

regionalizadas no processo de agrupamento com algoritmos não supervisionados. O método 

Aglomerativo Hierárquico Geoestatístico, elaborado por Romary et al. (2015), é do tipo 

espacial por considerar, além da proximidade multivariada entre os pontos, a proximidade 

geográfica pelo uso de gráficos de amostragem.  

3.3. Estimativa e Validação dos Resultados 

3.3.1.  Geoestatística 

A hipótese intrínseca implica que a distribuição espacial de uma variável regionalizada 

dentro do campo geométrico pode ser descrita por uma função (1) que depende apenas da 

distância e orientação entre os pontos (Goovaerts, 1997): 

 2𝛾(ℎ) =
1

𝑛
∑ [𝑍(𝑥 + ℎ) − 𝑍(𝑥)]2𝑛

𝑖=1        (1) 

(a) (b) 
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sendo 2γ(h) a função variograma; n a quantidade de pares de pontos separados por 

uma distância h, Z(x) o valor da variável regionalizada no ponto x e Z(x+h) o valor da mesma 

variável no ponto (x+h) (Yamamoto & Landim, 2013). Os resultados do cálculo da função 

variograma, que é uma função discreta, podem ser observados em um gráfico de dispersão 

que relaciona a variância espacial entre pares de pontos com as distâncias de separação 

entre eles, denominado variograma experimental. Os variogramas experimentais não são 

utilizados nas etapas subsequentes, pois a função variograma deve ser contínua, com valores 

de variância espacial para todas as direções e distâncias. Por isso, deve-se lançar mão do 

ajuste de um modelo teórico (modelo teórico de variograma) com funções positivas e 

monotônicas crescentes, como o esférico, o exponencial e o gaussiano, que são os mais 

comuns (Rossi & Deutsch, 2014). As propriedades de um modelo teórico de variograma 

descrevem o comportamento da variável regionalizada em determinada orientação e são 

(Figura 8): 

i. Alcance ou amplitude (a): distância a partir da qual as amostras passam a ser 

independentes e separa o campo estruturado (em que há correlação espacial) do 

campo aleatório (em que as amostras são espacialmente independentes); 

ii. Efeito pepita (C0): valor da função variograma próximo a origem, comumente 

diferente de zero devido à amostragem, aos processos analíticos e a variabilidade 

natural da mineralização; 

iii. Patamar (C0 + C1): valor da variância em que o variograma se estabiliza ou perde 

a estrutura (variância espacial máxima), que caracteriza o campo aleatório; 

iv. Variância espacial (C1): patamar subtraído o efeito pepita. 

 

Figura 8: Propriedades de um modelo de semivariograma. (Sinclair & Blackwell, 2004) 
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Tratando-se de uma função direcional, as propriedades de um variograma podem mudar 

de acordo com a direção analisada e, neste caso, configuram um fenômeno anisotrópico. A 

anisotropia pode ser classificada como geométrica (diferentes amplitudes), zonal (diferentes 

patamares) ou mista (diferentes amplitudes e patamares); e representada como uma elipsoide 

de continuidade a partir da análise estrutural de três direções: a de maior alcance (D1), a de 

menor alcance ortogonal a D1 (D2) e a ortogonal a D1 e D2 (Yamamoto & Landim, 2013). 

3.3.2.  Krigagem ordinária (KO) 

A krigagem ordinária é considerada um melhor estimador linear não enviesado (best 

linear unbiased estimator - BLUE), pois a esperança matemática dos erros é nula (não 

enviesado) e a determinação dos pesos de estimativa é realizada para minimizar a variância 

desses erros (Yamamoto & Landim, 2013). A krigagem ordinária também é denominada como 

um algoritmo não-estacionário, pois não assume que a média global é invariante para todo o 

depósito como a krigagem simples, e considera que as médias (desconhecidas) são 

invariantes apenas localmente. Para isso, e para que a ponderação não seja enviesada (soma 

dos pesos igual a um), o método utiliza o multiplicador de Lagrange (μ) como incógnita (Rossi 

& Deutsch, 2014). Os pesos são então determinados pela resolução de um sistema com n+1 

equações e n+1 pesos, que pode ser apresentado na forma matricial (Sinclair & Blackwell, 

2004; Yamamoto & Landim, 2013): 

 [ 

𝛾(𝑠1, 𝑠1) 𝛾(𝑠1, 𝑠2) 𝛾(𝑠1, 𝑠𝑛) 1
𝛾(𝑠2, 𝑠1) 𝛾(𝑠2, 𝑠2) 𝛾(𝑠2, 𝑠𝑛) 1
𝛾(𝑠𝑛, 𝑠1) 𝛾(𝑠𝑛, 𝑠2) 𝛾(𝑠𝑛, 𝑠𝑛) 1

1 1 1 0

 ]  [ 

𝑤1

𝑤2

𝑤𝑛

𝜇

 ] = [ 

𝛾(𝑠1, 𝑠0)
𝛾(𝑠2, 𝑠0)
𝛾(𝑠𝑛, 𝑠0)

1

 ]                  (2) 

   Matriz C                                Matriz D 

em que γ(si,sj) são as variâncias espaciais entre as amostras estimadoras, wi são os 

pesos a serem determinados e γ(si,s0) são as variâncias espaciais entre cada ponto 

amostrado e o ponto estimado s0.  Desse modo, a Matriz D é considerada a matriz de distância 

estatística, pois quanto menor for a variância espacial entre a amostra estimadora e o ponto 

estimado, maior será o peso atribuído a ela (Pyrcz & Deutsch, 2014). Por sua vez, a Matriz C 

é denominada matriz de desagrupamento, pois quanto maior a proximidade estatística entre 

duas amostras estimadoras, menor é a variância e, consequentemente, menores os pesos 

atribuídos a elas. Esta propriedade é capaz de gerar pesos negativos (efeito tela), que 

minimizam os efeitos de redundância dos dados, gerada pelo adensamento da malha e o 

alinhamento de amostras em uma mesma direção. Entretanto, pesos negativos também 

podem apresentar efeitos indesejáveis, como (Sinclair & Blackwell, 2004):  

i. Superestimativa, quando uma amostra de baixo teor recebe peso negativo; 

ii. Subestimativa, quando uma amostra de alto teor recebe peso negativo; 

iii. Estimativa de teores fisicamente impossíveis (negativos), quando um outlier 
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recebe peso negativo, por menor que seja o peso.  

Na ocorrência desses efeitos, sobretudo da estimativa de teores fisicamente 

impossíveis, é possível utilizar diferentes métodos de correção dos pesos, como igualar todos 

os pesos negativos a zero e reajustar os positivos proporcionalmente, mantendo-se o não 

enviesamento.  

3.3.3.  Métodos de validação de estimativa 

Dentre os métodos amplamente utilizados pode-se citar a comparação entre as 

estatísticas descritivas das amostras e do modelo estimado, a validação cruzada e a análise 

de deriva.  

A comparação entre as estatísticas descritivas consiste em um método de validação 

global das estimativas e deve considerar o efeito de suavização, próprio de estimativas 

baseadas em médias ponderadas, conforme mostra a Figura 9b com a redução da variância. 

De modo geral, busca-se observar quão diferentes são a distribuição amostral e a de teores 

estimados através da comparação dos histogramas e das medidas de tendência central e 

dispersão, além da elaboração de gráficos de dispersão como Quantil-Quantil ou Percentil-

Percentil (Abzalov, 2016).  

 

Figura 9: Histogramas (a) dos teores das amostras, (b) dos teores estimados na validação cruzada e (c) das 
diferenças entre os valores reais e estimados; e (d) gráfico de dispersão entre valores reais e estimados. (Sinclair 
& Blackwell, 2004)  

(c) (d) 

(a) (b) 
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Na validação cruzada, um método de validação local, executa-se a extração de uma 

amostra do banco de dados e sua estimativa pontual pela interpolação das amostras 

remanescentes na vizinhança. Este processo é repetido sucessivamente para as n amostras 

do banco de dados com determinados parâmetros de vizinhança e, para os métodos 

geoestatísticos, modelos teóricos de variograma; o que permite o confronto entre os valores 

reais das amostras extraídas e suas estimativas pontuais. Quanto maior a correlação linear 

positiva entre o cenário real e o cenário estimado, melhor é considerada a eficácia dos 

parâmetros de vizinhança e modelos teóricos de variograma utilizados (Figura 9d). Além da 

dispersão entre os valores reais e as estimativas pontuais, observa-se também a distribuição 

do erro (diferença entre eles), cuja média desejada é zero. O deslocamento da média do erro 

para a direita ou para a esquerda indica que houve superestimativa sistemática ou 

subestimativa sistemática, respectivamente (Figura 9c), refletindo a acurácia da estimativa, 

enquanto a variância do erro representa a sua precisão (Sinclair & Blackwell, 2004; Abzalov, 

2016). 

Análises de deriva consistem na subdivisão do depósito em fatias de determinada 

espessura ao longo de um eixo de referência para a visualização gráfica das médias móveis 

das amostras e do modelo estimado (Abzalov, 2016). Através do gráfico, denominado gráfico 

em fatias, swath plot ou gráfico em teia (Figura 10), observa-se a aderência entre as médias 

móveis, que reflete a acurácia da interpolação realizada e aponta em quais fatias do depósito 

houve subestimativa ou superestimativa, tratando-se de um método de validação local.  

 

 

Figura 10: Swath plot ao longo da direção E-W, com fatias N-S de espessura igual a 50 metros. (Rossi & Deutsch, 
2014) 
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4. MATERIAIS E MÉTODOS 

4.1. Materiais 

4.1.1.  Banco de dados 

O banco de dados consiste em uma única planilha que abrange um conjunto de 8.345 

furos verticais de perfuratriz tipo rockdrill. Como cada furo corresponde a uma amostra de 13 

metros, são no total 108.485 metros amostrados com informações de litotipos, PPC e teores 

de ferro, alumina, fósforo e sílica (Tabela 2).  

Tabela 2: Síntese das informações do banco de dados. 

Campo Informação 

FILENAME Nome do arquivo de origem (não acessado) 

X Coordenada em X 

Y Coordenada em Y 

Z Coordenada em Z (centro do furo) 

BHID Identificação dos furos 

FROM Início do intervalo (m) 

TO Final do intervalo (m) 

BLOCO Identificação do bloco de lavra 

LITH Código de litotipo 

Fe Teor de ferro (%): Fe2O3 

SiO2 Teor de sílica (%) 

Al2O3 Teor de alumina (%) 

P Teor de fósforo (%) 

PPC Perda por calcinação (%) 

LENGTH Comprimento das amostras (m) 

RADIUS (Campo formacional para softwares) 

A0 Azimute dos furos 

B0 Mergulho dos furos 

C0 Desvio dos furos 

Os furos foram obtidos de maneira sistemática, ou seja, a malha estudada é regular. 

Horizontalmente, a malha é rotacionada para a direção de 135°. A distância entre amostras é 

de 28,28 metros nas direções NE-SW e NW-SE para todos os pontos, que definem uma área 

amostral de aproximadamente 1,5 km² (Figura 11). Verticalmente, as amostras estão 

distribuídas entre 18 bancadas, que distam 13 metros uma da outra (Figura 12).  
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Figura 11: Malha dos furos de perfuratriz em planta.  

    

Figura 12: Seção vertical SW-NE dos furos de perfuratriz.  
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4.1.2. Infraestrutura de informática  

Foram utilizados os softwares comerciais Studio RM® (Datamine Software), Supervisor® 

(Datamine Software) e Isatis.neo Mining® (Geovariances), bem como programação em 

linguagem Python com o uso do software livre Jupyter Notebook e as bibliotecas Sklearn 

(Pedregosa et al., 2011) e Scipy (Virtanen et al., 2020). 

4.2. Métodos 

4.2.1.  Levantamento bibliográfico  

O levantamento e o estudo de dissertações, teses, artigos, livros e demais obras acerca 

dos temas pertinentes permitiram a maior compreensão da área de estudo, técnicas 

empregadas e resultados obtidos.  

4.2.2.  Validação e análise exploratória dos dados  

A validação do banco de dados consistiu na busca por valores incongruentes e sua 

correção, quando necessária. Como parte da análise exploratória dos dados (AED), foram 

realizadas as análises estatísticas uni e bivariada dos dados.   

4.2.3.  Definições de subdomínios 

As amostras foram submetidas à definição de subdomínios com base na classificação 

original dos litotipos da mina em minério ou estéril e a análise de agrupamento com os 

algoritmos K-means (KM), Aglomerativo Hierárquico (HC) e Aglomerativo Hierárquico 

Geoestatístico (GHC).  

4.2.4.  Modelo de blocos, análise geoestatística e estimativa 

Os blocos do modelo foram classificados em estéril, minério ou de transição, a depender 

da classificação das amostras no entorno, para realizar as estimativas por subdomínios. Após 

a análise geoestatística de todos os cenários, as estimativas foram realizadas por krigagem 

ordinária (KO). 

4.2.5.  Validação da estimativa e comparação entre os cenários 

Para avaliar e comparar os agrupamentos, foram utilizadas legendas de teores e 

análises de contato, além da obtenção de boxplots por subdomínio em cada cenário. Métodos 

de validação locais e globais de estimativa foram aplicados também para avaliar os efeitos de 

cada cenário nas interpolações. Entre eles: a comparação das estatísticas descritivas do 

conjunto amostral e dos modelos estimados, a validação cruzada para obtenção dos erros e 

coeficientes de correlação linear em cada cenário, a análise de deriva e a geração de gráficos 

quantil-quantil (Q-Q plots).  

 



27 
 

5. RESULTADOS OBTIDOS 

5.1.  Análise Exploratória dos Dados 

5.1.1. Litotipos da mina Capanema 

Os litotipos presentes no campo LITH são HA, HB, SI, WH, SIA e SIP (Figura 13), 

conforme classificação realizada pela MSG e registrada por Massahud (1996 apud Rocha, 

1999) em relatório interno, a partir dos critérios: cor, textura, compactação e teores de ferro, 

alumina, fósforo e sílica. Desses, são considerados litotipos de minério HA, HB e SI, em 

contraste aos demais litotipos, com baixo teor de ferro (~50%) e/ou alta concentração de 

contaminantes. 

 

 

Figura 13: Malha dos furos de perfuratriz em perspectiva com legenda de litotipo.  

Conforme Massahud (1996 apud Rocha, 1999) e Fonseca (2014), os litotipos presentes 

se caracterizam como itabiríticos e hematíticos: 

Itabiríticos 

Compostos sobretudo por hematita (Fe2O3), com baixa concentração de magnetita 

(Fe3O4) e conteúdo variável de goethita (FeOHn). 

i. Itabirito Mole (SI): intercalação de bandas de sílica e hematita não consolidadas 

com 50% a 60% de ferro. Considerado um itabirito rico. 
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ii. Itabirito Muito Mole (SIP): intercalação de bandas de sílica e hematita não 

consolidadas, menos compacto que o anterior, com teores de ferro inferiores a 

~50%. Considerado um itabirito pobre. 

iii. Itabirito Mole Anfibolítico (SIA): intercalação de bandas de sílica e hematita não 

consolidadas com anfibólio bastante alterado, em que o óxido de ferro 

predominante é a goethita e os teores variam de 55 a 60%. 

Hematíticos 

Descritos como camadas contínuas com 10 a 30 metros de espessura com teores de 

ferro acima de 62%. Ainda de acordo com Fonseca (2014), quanto mais exposto e alterado o 

hematitito, mais empobrecido em ferro e enriquecido em contaminantes (alumina e fósforo).  

i. Hematita A (HA): laminada e bandada, friável a pulverulenta, de baixa dureza e 

com poucos leitos de sílica livre. 

ii. Hematita B (HB): laminada e bandada, com maior frequência de leitos silicosos.  

iii. Hematita Alterada (WH): laminada e bandada, rica em minerais hidratados 

(hidróxidos de ferro, hidróxidos de alumínio e silicatos hidratados de alumínio), 

com teores em torno de 60% de ferro, baixa sílica e rica em contaminantes. 

5.1.2.  Validação e tratamento dos dados 

Foram identificados 1.365 registros cujos valores de ferro, alumina, sílica e fósforo eram 

simultaneamente iguais a zero, além de possuírem PPC ausente. Estes registros, distribuídos 

por quatro bancadas e não correspondentes a litotipos específicos, foram interpretados como 

valores ausentes e desconsiderados no fluxo de trabalho, restando 6.980 amostras válidas. 

Ainda, visando a definição dos subdomínios, foram removidas 261 amostras que possuíam 

teor ausente de fósforo, pois os algoritmos de agrupamento não admitem o uso de 

observações ausentes, restando 6.719 amostras para o fluxo de trabalho.  

Tendo em vista a definição de subdomínios com base nos litotipos, realizou-se a 

classificação das 18 amostras com litotipo ausente através de Análise Discriminante Múltipla, 

a qual utiliza n variáveis métricas (ferro, alumina e fósforo) agrupadas em i grupos discretos 

(os seis litotipos da mina) para definir, com base em amostras conhecidas, a qual grupo 

pertence uma amostra indefinida (Pinches, 1980). Como resultado, treze das amostras foram 

classificadas como HB, três amostras como HA e duas como SIA, com índice de acerto de 

aproximadamente 81%. 

5.1.3.  Análise estatística 

As medidas de tendência central, dispersão e forma de todas as variáveis foram obtidas 

tanto para as amostras de maneira geral, apresentadas na Tabela 3, quanto por litotipo 
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(Apêndice I). Destacam-se na Tabela 3 a alta variabilidade do fósforo (CV = 4,62) e a baixa 

variabilidade do ferro (CV = 0,09), que chega a ser inferior a 0,06 na maioria dos litotipos. 

Destaca-se também o alto teor médio do ferro para o depósito como um todo (59,89%).  

Tabela 3: Estatísticas descritivas gerais do banco de dados validado e tratado. 

Variável n Mínimo Máximo Média Variância s CV 

Fe 6.719 3,08 67,67 59,89 28,62 5,35 0,09 

Al2O3 6.719 0,00 20,20 1,49 1,69 1,30 0,87 

P 6.719 0,00 10,61 0,12 0,33 0,58 4,62 

SiO2 6.719 0,00 93,30 8,57 79,22 8,90 1,04 

PPC 6.719 0,01 14,37 3,95 5,43 2,33 0,59 

n = número de amostras; s = desvio padrão, CV = coeficiente de variação 

 

Conforme esperado, os litotipos pobres em fósforo e alumina e ricos em ferro são HA 

(~65% Fe), HB (~62% Fe) e SI (~58% Fe), conforme exemplificado na Figura 14. As amostras 

dos demais litotipos apresentam ou baixo teor de ferro (SIP) ou alta PPC e concentração de 

contaminantes (SIA e WH), como é ilustrado na Figura 14 e nos boxplots do Apêndice II.  

 

Figura 14: Boxplots dos teores de (a) ferro e (b) alumina por litotipo do banco de dados validado e tratado.  

Nos histogramas apresentados na Figura 15, verifica-se: a distribuição assimétrica 

positiva dos conteúdos de sílica, alumina e fósforo e da PPC, a distribuição assimétrica 

negativa do conteúdo de ferro e a presença de outliers. Observa-se a ocorrência de outliers 

de ferro, sílica, alumina e fósforo, sendo que os valores extremos do fósforo podem ser 

considerados uma segunda população com teores entre 1-10%, aproximadamente (Figura 

15c). Os histogramas para os dados originais e para os dados validados e tratados podem ser 

observados no Apêndice III. 

(a) 

(b) 
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Figura 15: Histogramas gerais dos teores de (a) ferro, (b) alumina, (c) fósforo em escala de log-probabilidade 
aritmética e (d) sílica; e (e) da perda por calcinação dos dados validados e tratados. 

(a) (b) 

(c) (d) 

(e) 
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Na análise bivariada, os coeficientes de correlação linear de Pearson (Tabela 4) 

apontam correlação linear superior a |0,7| apenas entre as variáveis sílica e ferro (r = -0,91) e 

moderada entre PPC e alumina (r = 0,78). 

Tabela 4: Matriz de correlação linear entre as variáveis numéricas do banco de dados validado e tratado, 
destacadas as maiores correlações. 

 Al2O3 Fe P PPC SiO2 

Al2O3 - 0,088 0,050 0,780 -0,430 

Fe 0,088 - 0,020 0,210 -0,910 

P 0,050 0,020 - 0,094 -0,048 

PPC 0,780 0,210 0,094 - -0,560 

SiO2 -0,430 -0,910 -0,048 -0,560 - 

 

Os gráficos de dispersão evidenciam como os teores de ferro e sílica foram critérios 

preponderantes na classificação dos litotipos HA, HB, SI e SIP, como ilustrado na Figura 16a. 

Curiosamente, quando observados separadamente, os outliers do fósforo (teores 1-10%, 

conforme o histograma) possuem correlação linear muito elevada com a alumina e a PPC 

(Figura 16b). Os diagramas de dispersão de todos os pares de variáveis podem ser 

observados no Apêndice V. 

 

Figura 16: Gráficos de dispersão entre (a) ferro e sílica e (b) entre os outliers de fósforo e a perda por calcinação 
do banco de dados validado e tratado com legenda de litotipos. 

5.1.1. Análise visual das variáveis no espaço 

O uso de legendas de teores evidenciou, visualmente, alguns padrões na distribuição 

espacial de teores dos elementos analisados, como a forte variação vertical do fósforo (Figura 

17). Verifica-se também menores teores de ferro e alumina e menores porcentagens de PPC 

nas amostras mais distantes da superfície topográfica, conforme ilustrado no perfil da Figura 

(a) (b) 
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18, devido à geometria da Sinforme Córrego das Flechas e o forte controle litológico (Figura 

3).  O Apêndice IV é composto pelos mapas de pontos amostrais, com legenda de teores, de 

todas as variáveis. 

 

Figura 17: Malha em perspectiva com legenda de teores de fósforo.  

  

Figura 18: Perfil vertical SW-NE da malha com legenda de teores de ferro. 

5.2. Agrupamento das Amostras 

A primeira definição realizada se baseou somente nos litotipos. As amostras de HA, HB 

e SI foram classificadas manualmente como minério (1) e as amostras de SIA, SIP e WH, 

como estéril (0). Neste estudo, “estéril” refere-se a todas as observações que não apresentam 

simultaneamente alto teor de ferro (>55% para a mina Capanema) e baixa concentração de 

contaminantes, de acordo com a Tabela 1 de referência. 

Os demais cenários de agrupamento foram obtidos com os algoritmos de análise de 

agrupamento KM, HC e GHC a partir das variáveis-critério ferro, alumina e fósforo. 

Considerando-se as correlações sílica-ferro e PPC-alumina observadas na análise 
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exploratória, o uso da sílica e da alumina foi dispensado para evitar ruídos e a geração de 

grupos redundantes. Antes da aplicação dos algoritmos, as variáveis-critério foram 

padronizadas para evitar que as diferentes escalas enviesassem os agrupamentos.  

De acordo com o método do cotovelo (Figura 19), o agrupamento mais eficiente para o 

banco de dados com as variáveis-critério escolhidas corresponde à definição de quatro 

subdomínios. Na aplicação do K-means com a biblioteca Scikit-learn (Pedregosa et al., 2011), 

o algoritmo foi executado dez vezes com a predefinição de quatro clusters e escolheu-se um 

dos resultados que apresentavam o padrão de agrupamento mais frequente. 

 

Figura 19: Gráfico da inércia total (soma total dos quadrados intra-cluster) pela quantidade de clusters com o 
algoritmo de análise de agrupamento K-means. 

Na aplicação do HC (biblioteca Scikit-learn) e do GHC (software Isatis.neo), os níveis 

hierárquicos escolhidos foram os que resultavam também em quatro agrupamentos e o critério 

de proximidade utilizado foi o Ward para ambos os algoritmos. Embora a interface do GHC no 

software Isatis.neo seja bastante personalizável, optou-se por utilizar a configuração default 

da ferramenta, que atribui o mesmo peso a todas as variáveis-critérios e assume um cenário 

isotrópico de amplitude igual a 1.000 m.      

Com a análise estatística de cada cluster, verificou-se a tendência de todos os 

algoritmos distinguirem: um grupo de alto teor de ferro e baixa concentração de contaminantes 

(cluster 0), dois grupos com alto teor de ferro e alta concentração de cada contaminante 

(clusters 1 e 2), e um quarto grupo de baixo teor de ferro (cluster 4), conforme pode ser 

observado na Tabela 5. Para padronizar todos os cenários, os clusters foram reagrupados em 

minério (1) e estéril (0) conforme apresenta-se na Tabela 5, utilizando-se como critério as 

estatísticas de ferro e de contaminantes em cada um. Esta reclassificação binária também 

serviu para aumentar a quantidade de observações em cada grupo e assim não restringir 

demais a quantidade de amostras estimadoras disponíveis para cada bloco, além de facilitar 

a classificação dos próprios blocos com base nas amostras adjacentes, excluindo-se 
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situações em que um único bloco poderia ser circundado por quatro grupos diferentes, por 

exemplo. 

Tabela 5: Teores médios das variáveis critério em cada agrupamento por algoritmo de análise de agrupamento, 
destacas as médias que caracterizam cada grupo. 

Algoritmo Cluster 
Teor médio 

Subdomínio 
% Fe % Al2O3 % P 

K-means 

0 62,91 1,31 0,07 Minério 

1 60,83 1,60 4,66 Estéril 

2 59,50 4,11 0,09 Estéril 

3 52,75 0,67 0,05 Estéril 

Aglomerativo 

Hierárquico 

0 62,12 0,96 0,05 Minério 

1 60,81 1,37 3,97 Estéril 

2 61,05 3,10 0,08 Estéril 

3 50,71 0,69 0,05 Estéril 

Aglomerativo 

Hierárquico 

Geoestatístico 

0 61,90 1,09 0,12 Minério 

1 61,29 1,56 5,08 Estéril 

2 61,19 3,13 0,08 Estéril 

3 52,52 0,70 0,05 Estéril 

 

Espacialmente, os resultados dos algoritmos HC e GHC são muito semelhantes e se 

diferenciam do K-means sobretudo em relação aos clusters 0 e 2 (Figura 21), pois cerca de 

50% das amostras do cluster 2 nos algoritmos do tipo hierárquico foram atribuídas ao cluster 

0 pelo K-means.  

 

Figura 20: Malha dos furos de perfuratriz com a legenda de clusters por algoritmo de análise de agrupamento. 
Linhas tracejadas demonstram em quais porções da malha o resultado do K-means se assemelha mais com o HC 
e o GHC. 

Na Figura 21, verifica-se que a semelhança entre os clusters identificados por cada 

algoritmo não se restringe às médias e todos possuem distribuições estatísticas parecidas. 

Observa-se também a inclusão de outliers indesejados no cluster 0, de maior interesse, pelos 

algoritmos K-means (para a variável fósforo) e GHC (para as variáveis ferro, alumina e 
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fósforo). 

 

Figura 21: Boxplots dos teores de ferro, alumina e fósforo em cada cluster por algoritmo de análise de 
agrupamento. K-means (KM), Aglomerativo Hierárquico (HC) e Aglomerativo Hierárquico Geoestatístico (GHC).  
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5.3. Modelo de Blocos 

As configurações utilizadas para a geração do modelo de blocos visaram a colocação 

das amostras nas arestas verticais das células parentais, conforme a Figura 22. Para isso, as 

células parentais têm as configurações da Tabela 6. Como o modelo de blocos foi rotacionado, 

refere-se aos eixos X, Y e Z após rotação como eixos U, V e W, respectivamente. São, no 

total, 47 células no eixo U (-46°) do modelo, 110 células no eixo V (44º) e 18 no eixo W 

(vertical).  

Tabela 6: Propriedades das células parentais do modelo de blocos. 

Rotação Dimensão em U Dimensão em V Dimensão em W 

-46° 28,28 m 28,28 m 26 m 

 

 

Figura 22: Modelo de blocos sobre a malha dos furos de perfuratriz em planta.  

 

U V 



37 
 

5.3.1.  Definição dos Subdomínios 

A partir da reclassificação binária (Tabela 5), os cenários foram simplificados sem 

prejuízo no agrupamento das amostras de maior interesse (minério), o que facilitou a o 

agrupamento das células do modelo de blocos nos mesmos subdomínios de suas amostras 

adjacentes. Para isso, as células foram consideradas minério quando possuíam mais 

amostras dessa natureza em suas arestas verticais, e consideradas estéril utilizando-se a 

mesma lógica. Ainda, as células que compartilhavam a mesma quantidade de amostras de 

estéril e de minério foram consideradas um subdomínio de transição, conforme 

esquematizado na Figura 23 

  

Figura 23: Esquematização da relação entre os subdomínios das amostras (estéril e minério) e a definição de 
subdomínios no modelo de blocos (estéril, transição e minério).  

 Por fim, as amostras e o modelo de blocos receberam quatro novos campos, 

relacionados aos quatro cenários de definição de subdomínios para estimativa, conforme 

indicado na Tabela 7 e ilustrado na Figura 24. 

Tabela 7: Os quatro cenários de definição dos subdomínios estéril, minério e de transição. 

Campo Informação 

ESTMIN_LITH 
Amostras classificadas como 0 (estéril) ou 1 (minério) com base nos 
litotipos; e blocos classificados como 0, 1 ou 2 (transição). 

ESTMIN_KM 
Amostras classificadas como 0 (estéril) ou 1 (minério) com base nos 
clusters do algoritmo K-means; e blocos classificados como 0, 1 ou 
2 (transição). 

ESTMIN_HC 
Amostras classificadas como 0 (estéril) ou 1 (minério) com base nos 
clusters do algoritmo Aglomerativo Hierárquico; e blocos 
classificados como 0, 1 ou 2 (transição). 

ESTMIN_GHC 
Amostras classificadas como 0 (estéril) ou 1 (minério) com base nos 
clusters do algoritmo Aglomerativo Hierárquico Geoestatístico; e 
blocos classificados como 0, 1 ou 2 (transição). 
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Figura 24: Vista em planta do modelo de blocos em cada um dos quatro cenários de definição de subdomínios 
para estimativa.  

5.4.  Análise Geoestatística 

O cálculo dos variogramas experimentais foi realizado para o ferro nos cinco diferentes 

cenários, sempre com tamanho do passo igual a 40 metros. Em todos os cálculos, utilizaram-

se 18 direções (variação de 10º na direção angular) e tolerâncias angulares de 10º sem largura 

máxima. Visto que cada furo é composto de uma única amostra, os variogramas downhole 

não foram calculados e os efeitos pepita utilizados foram obtidos dos variogramas 
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omnidirecionais. No cenário de domínio único, os eixos D1 e D2 possuem patamares menores 

que a variância a priori e alcances próximos de 200 metros (Figura 25). O terceiro eixo 

(perpendicular à xistosidade) tem continuidade inferior (<120 metros) e patamar acima da 

variância a priori. Os modelos teóricos de variograma e as elipsoides de continuidade de cada 

subdomínio por cenário podem ser observados nos Apêndice VI e Apêndice VII, 

respectivamente. 

 

Figura 25: Variogramas experimentais e respectivos modelos teóricos ajustados do ferro no cenário de domínio 
único. (a) Omnidirecional, (b) direção 1, (c) direção 2 e (d) direção 3. Eixo vertical: variância relativa à variância a 
priori (gamma).    

5.5. Estimativas 

Os volumes de busca foram configurados com as mesmas dimensões e atitudes das 

elipsoides de continuidade. Utilizou-se também mínimo de 4 e máximo de 12 amostras para 

a estimativa. Os blocos também foram discretizados três vezes em cada eixo.  

(a) (b) 

(c) (d) 
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O alinhamento das amostras na malha favoreceu a geração de muitos pesos negativos 

e a estimativa de teores negativos de ferro. Portanto, os pesos negativos foram corrigidos 

igualando-os a zero e com o reajuste dos pesos positivos. Em cada cenário, blocos do 

subdomínio estéril foram estimados apenas com amostras do domínio estéril, utilizando-se a 

mesma lógica para o subdomínio minério (Figura 27). Na estimativa dos blocos de transição, 

foram interpoladas tanto as amostras do tipo estéril quanto as do tipo minério, e utilizados os 

variogramas do cenário de domínio único.  

 

Figura 26: Vista em planta do modelo de blocos com teores estimados de ferro em cada cenário.  

5.6. Validação e Avaliação dos Efeitos do Agrupamento nas Estimativas 

Na Tabela 8, verifica-se que todos os agrupamentos resultaram em estimativas com 

menor diferença entre a média amostral e estimada, mas que esta diferença permanece muito 

próxima da gerada pelo uso de um domínio único. Pelos histogramas de teores estimados 

(Apêndice VIII), verifica-se que todas as definições de subdomínios resultaram na estimativa 

de duas populações estatísticas de ferro (histogramas bimodais), enquanto os cenários de 

domínio único e agrupamento pelo algoritmo GHC melhor preservaram a forma unimodal da 

distribuição amostral. 
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Tabela 8: Estatísticas descritivas dos teores de ferro nas amostras e nos modelos estimados em cada cenário, 
destacados os valores mínimo e máximo, média e variância mais próximos do conjunto amostral. 

 Amostras Domínio único Litotipos KM HC GHC 

Mínimo 3,08 18,29 12,75 23,12 9,74 12,29 

Máximo 67,67 66,25 66,06 66,12 66,21 66,59 

Média 59,89 59,60 59,71 59,74 59,66 59,65 

Variância 28,62 13,77 17,97 19,29 17,88 18,41 

Os erros obtidos com a validação cruzada são muito próximos a zero (sem viés) em 

todos os cenários, mas foi o cenário de agrupamento com o K-means que retornou o menor 

erro médio e a menor variância (Figura 28 e Apêndice IX). Consequentemente, o coeficiente 

de correlação linear de Pearson deste cenário também é o maior observado (r = 0,836). Nota-

se que os coeficientes de correlação para os agrupamentos são maiores devido ao efeito de 

“afunilamento” (Apêndice IX-B) gerado pelas distribuições bimodais do ferro estimado. 

 

Figura 27: Histogramas dos teores de ferro (a) nas amostras e (b) resultantes da validação cruzada; (c) histograma 
dos erros e (d) dispersão entre os teores reais e as estimativas pontuais para o cenário do K-means. 

(a) (b) 

(c) (d) 
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Os cenários de agrupamento por litotipos, HC e GHC também apresentaram menor 

variância de erros e maiores coeficientes de correlação em relação ao domínio único, embora 

as diferenças sejam pouco significativas. Verifica-se também que os maiores erros se 

concentram nos subdomínios de estéril, devido à mistura de amostras de baixo teor de ferro 

com amostras de alto teor de ferro e alta concentração de contaminantes. Para o K-means, 

por exemplo, a variância do erro no subdomínio minério é igual a 3,429 (40% menor que a 

variância geral).  

Pela análise dos gráficos quantil-quantil (Apêndice X), observa-se que todos os métodos 

se afastam da distribuição amostral nas duas extremidades, conforme o esperado pelo efeito 

de suavização de estimativa. O cenário de domínio único é o que mais se afasta e o cenário 

do K-means, o que mais se aproxima (Figura 29). Como consequência das formas dos 

histogramas, os cenários de domínio único e agrupamento com GHC são os que mais se 

aproximam de uma distribuição normal, enquanto os demais apresentam comportamento 

bimodal. Na Figura 28, estão destacados os intervalos de teores de maior semelhança.  

   

 

Figura 28: Gráficos Quantil-Quantil entre os teores de ferro do conjunto amostral e as estimativas dos cenários 
com domínio único e com agrupamento por K-means e GHC. 
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Na análise de deriva da Figura 29, pode-se ver como as acurácias das estimativas nos 

diferentes cenários são altas e muito próximas entre si, conforme indicado pelos erros 

observados na validação cruzada, apresentando boa aderência com as médias móveis da 

malha amostral. Ainda, a curva do GHC é a que melhor se adere à curva de estimativa com 

domínio único em praticamente todas as fatias, o que provavelmente é um efeito da sua 

propriedade de incluir a posição geográfica dos pontos no critério de agrupamento.  

 

Figura 29: Médias móveis do ferro por fatias de orientação E-W e com espessura igual a 100 metros.  

 

6. INTERPRETAÇÃO E DISCUSSÃO DOS RESULTADOS 

6.1. Agrupamentos 

O dendrograma da Figura 30 permite identificar que o maior nível hierárquico do HC 

distingue as duas populações de fósforo observadas na AED, tal como o maior nível do GHC, 

devido ao coeficiente de variação muito superior ao das demais variáveis. Portanto, para os 

objetivos do estudo, a utilização dos quatro clusters apontados pelo método do cotovelo do 

algoritmo K-means também para os métodos hierárquicos foi essencial, visto que o uso de 

dois clusters discretizaria as amostras apenas pelo teor de fósforo, mascarando a importância 

do ferro e não permitindo a sua reclassificação em minério ou estéril. Até mesmo o 

agrupamento em três clusters não atenderia aos objetivos do estudo, visto que neste caso o 

cluster rico em ferro agruparia também as amostras ricas em alumina.  
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Figura 30: Dendrograma do agrupamento realizado pelo método Ward do algoritmo Aglomerativo Hierárquico. 
Altura = Distância euclidiana entre os pares no espaço multivariado. 

O cluster 0 é constituído por dois subgrupos na altura ~30 (Figura 30), os quais se 

relacionam com os litotipos de minério. Enquanto o subgrupo denominado como “HA” na 

Figura 30 é composto majoritariamente por amostras de Hematita A com significativa 

presença de HB e menor frequência de Itabirito Mole Anfibolítico e Hematita Alterada, o outro 

subgrupo é composto em sua maioria por Hematita B e Itabirito Mole (SI) com a inclusão 

menos expressiva de amostras dos demais litotipos. Conforme verificado na análise 

exploratória, os teores de HB são todos intermediários aos de HA e SI (Apêndice I e Apêndice 

II).  

Sob análise de contato, o contato entre os subdomínios estéril e minério gerados com o 

K-means foi calculado como abrupto (hard boundary), enquanto os demais foram 

consideradas transicionais (soft boundary) (Figura 31). Nota-se no gráfico de análise de 

contato que os subdomínios do K-means apresentam médias móveis inferiores às do HC para 

o estéril (~55%) e semelhantes às do HC (~62%) para o minério, porém com menor variância.  
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Figura 31: Análises de contato entre os subdomínios estéril (0) e minério (1) para (a) o algoritmo HC e (b) o 
algoritmo K-means. 

6.2. Análise Geoestatística 

O principal plano da elipsoide de continuidade do ferro, definido pelos eixos D1 218/45º 

e D2 131/04º no cenário de domínio único, é paralelo à xistosidade S2 do Sinforme Córrego 

das Flechas (Figura 32), flanco leste do Sinclinal Ouro Fino.  

 

Figura 32: Elipsoide de continuidade do ferro no domínio único. 

A análise geoestatística para os cenários de agrupamento resultou em variogramas de 

direções próximas às verificadas no domínio único (Apêndice VI) e, em geral, os eixos D1 e 

D2 apresentam maiores alcances (Figura 33). Os variogramas experimentais, entretanto, são 

pior estruturados, fato que pode ser atribuído à redução da quantidade de amostras 

disponíveis para análise. Embora todos os cenários preservem o principal plano de 

continuidade, pode-se observar no Apêndice VII que apenas o K-means apresenta D1 na 

direção NE-SW (como no domínio único). 

(a) (b) 
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Figura 33: Variogramas experimentais e respectivos modelos teóricos na direção de maior continuidade do ferro 
para (a) o domínio único e (b) o subdomínio de minério do HC. Eixo vertical: variância relativa à variância a priori 
(gamma). 

6.3.  Validação e Avaliação do Efeito do Agrupamento nas Estimativas  

Embora os cenários de agrupamento tenham apresentado resultados melhores que o 

cenário de domínio único na validação cruzada, ressalta-se que o método não reflete 

exatamente a acurácia e precisão das estimativas dos blocos. Entre os motivos, destacam-se 

a diferença de suporte (estimativa pontual versus estimativa de bloco discretizado), a posição 

relativa das amostras ao centroide de cada célula e entre as amostras; e o agrupamento dos 

blocos em três subdomínios e das amostras em dois. Portanto, a validação cruzada não 

considera o subdomínio de transição, de modo que os erros e os coeficientes de correlação 

para os cenários de agrupamento podem ser ainda mais semelhantes aos do cenário de 

domínio único do que o observado. 

Embora o K-means e os demais métodos de agrupamentos apresentem melhores 

resultados estatísticos para as estimativas, é o cenário de domínio único que retorna o 

resultado espacial de menor variabilidade e a distribuição de teores estimados com maior 

continuidade (Figura 34). Os resultados do cenário de agrupamento do GHC são os que mais 

se assemelham ao uso de domínio único em todos os métodos de validação utilizados 

(validação cruzada, análise de deriva e comparação das estatísticas descritivas), além destes 

cenários apresentarem as elipsoides de continuidade mais parecidas. 

Portanto, a estimativa com domínio único pode ser mais adequada para o planejamento 

a longo prazo, no qual se faz importante a compreensão dos teores médios e sua distribuição 

geral. Já as estimativas com definição de subdomínios devem ter aplicação mais útil no 

planejamento de curto prazo por reduzir o efeito de suavização, o que teria implicação na 

(a) (b) 
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otimização do avanço da frente de lavra e no controle de teores da pilha de minério de acordo 

com os estabelecidos para o Run of Mine da mina Capanema (Tabela 1). 

 

Figura 34: Comparação entre os teores das amostras e do modelo de blocos nos diferentes cenários de 
agrupamento no setor norte do depósito. 

 

7. CONCLUSÕES 

Pode-se concluir que a análise exploratória de dados foi essencial para compreender a 

malha utilizada e a distribuição dos teores no depósito e como todas as variáveis se 

correlacionam, o que permitiu a tomada de decisões nas demais etapas, como: a dimensão, 

rotação e posição do modelo de blocos, a escolha das variáveis-critério para o agrupamento 

com análise de agrupamento, a realização do próprio agrupamento baseado nos litotipos e a 

definição dos parâmetros de vizinhança para estimativa.   

Ainda, o uso do método do cotovelo para escolha da quantidade ótima de agrupamentos 

com o algoritmo K-means foi satisfatória para os objetivos do estudo e adequada também 

para os algoritmos aglomerativos hierárquicos. Os resultados de agrupamento de todos se 

assemelharam, tanto estatística quanto espacialmente, e distinguiram: um cluster com alto 

teor de ferro e baixos teores de alumina e fósforo, dois clusters com alta concentração de 

contaminantes e um cluster pobre em ferro. Após a reclassificação dos clusters nos 

subdomínios minério ou estéril, verificou-se que o agrupamento manual dos litotipos também 

retornou resultados semelhantes aos dos algoritmos. 

A análise geoestatística revelou forte controle estrutural-litológico na distribuição dos 

teores de ferro, cujo plano de maior continuidade é paralelo à xistosidade S2 do Sinforme 
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Córrego das Flechas, que corresponde ao corpo de minério. Este resultado é coerente com o 

modelo genético de FFBs do tipo Lago Superior e com a evolução geológica do QF. A redução 

da quantidade de amostras disponíveis para análise estrutural nos cenários de subdomínio 

resultou em variogramas com maiores alcances, porém pior estruturados.  

O agrupamento das amostras conferiu, no geral, maior acurácia e precisão para as 

estimativas de todos os cenários de agrupamento em relação ao cenário de domínio único, 

que resultou no modelo de menor variabilidade pela suavização mais expressiva dos teores 

inferiores e superiores a ~57%. Destaca-se o K-means como método que retornou os 

melhores resultados de validação, podendo ser considerado um método de alta eficácia na 

discriminação estatística de clusters. Os ganhos em acurácia e precisão, no entanto, foram 

pequenos, o que se deve tanto pela baixa variabilidade natural do ferro, quanto pela alta 

eficácia da krigagem ordinária. Provavelmente, ganhos mais significativos seriam observados 

com o uso de métodos que apresentam maior efeito de suavização, como os não 

geoestatísticos ou mesmo a krigagem simples, nos casos em que não houver 

estacionariedade de primeira ordem e/ou a média global estiver enviesada.        

O resultado do algoritmo GHC foi o que mais se aproximou do uso de domínio único, 

provavelmente por considerar as posições geográficas das amostras e não apenas as 

relações estatísticas entre as substâncias escolhidas. Sua inserção em um software 

apresenta grandes benefícios para os usuários, tanto por dispensar o conhecimento de 

linguagens de programação para realizar agrupamentos complexos e altamente 

configuráveis, quanto por reunir a análise de agrupamento e as demais etapas da avaliação 

de recursos e reservas minerais em uma única interface. Ressalta-se ainda a vantagem que 

o algoritmo oferece de atribuir novas amostras a agrupamentos previamente definidos, sem a 

necessidade de reclassificar todo o conjunto amostral ou recorrer a métodos externos como 

a Análise Discriminante Múltipla, como aconteceria para os algoritmos K-means e 

Aglomerativo Hierárquico.   

Para a mina Capanema, ainda que os ganhos em acurácia e precisão de estimativa não 

justifiquem o tempo empregado para realizar a definição dos subdomínios, conclui-se que os 

métodos de agrupamento são eficazes e podem ter útil aplicação em outros contextos de 

avaliação de recursos e reservas minerais, o que deve ser melhor explorado, como: na 

avaliação de recursos e reservas com malhas menos densas e/ou não regulares, na avaliação 

de substâncias com alta variabilidade, em que se esperam contatos abruptos; e para modelos 

de curto prazo, em que há maior necessidade de detalhamento dos contrastes locais nas 

estimativas de teores altos e baixos.   
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8. CONSIDERAÇÕES FINAIS 

Com base nos resultados obtidos e tomadas de decisão realizadas ao longo do estudo, 

recomenda-se para trabalhos futuros:  

i. A investigação dos métodos de agrupamento tradicionais (manuais) e por análise 

de agrupamento em outros contextos, como em malhas pouco densas e/ou não 

regulares, para depósitos de substâncias heterogêneas ou para os próprios 

contaminantes do ferro, de maior variabilidade; 

ii. Verificar se a transformação das variáveis-critério é mais adequada por 

normalização ou por padronização para aplicar os algoritmos de agrupamento; 

iii. A remoção dos outliers inseridos de maneira indesejada nos clusters de maior 

interesse pelos algoritmos de agrupamento, atribuindo-os a outros grupos; 

iv. Investigar as diferenças entre os algoritmos de agrupamento KM, HC e GHC para 

furos que contenham mais de uma amostra, visto que o GHC considera as 

distâncias espaciais e, neste caso, deverá apresentar grupos mais contínuos; 

v. Realizar o agrupamento com o algoritmo GHC com outras configurações que não 

a padrão do software Isatis.neo®, como a atribuição de diferentes pesos para as 

variáveis-critério escolhidas, a inserção dos litotipos como critério categórico e 

principalmente a configuração de uma elipsoide de continuidade que corresponda 

aos modelos teóricos de variograma do ferro e o campo geométrico em questão;  

vi. Tendo em vista a geometria do Sinforme Córrego das Flechas e suas dobras 

parasitas, investigar a relevância de se considerar anisotropias dinâmicas para 

realizar as estimativas.   
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APÊNDICE I - ESTATÍSTICAS DESCRITIVAS POR LITOTIPO 

Apêndice I-A) Estatísticas descritivas de ferro nos dados validados e tratados. 

Medida HA HB SI SIA SIP WH 

Quantidade 2065 926 898 170 1202 1458 

Mínimo 43,70 59,65 50,47 35,98 3,08 26,97 

Máximo 67,67 64,10 59,99 63,90 59,68 65,57 

Média 64,55 61,67 57,97 59,97 51,11 60,59 

Mediana 64,46 61,78 58,01 60,64 52,23 61,44 

Variância 1,13 0,80 1,59 9,37 22,56 9,97 

Desvio Padrão 1,06 0,89 1,26 3,06 4,75 3,16 

Coef. de Variação 0,02 0,01 0,02 0,05 0,09 0,05 

Assimetria -3,38 -0,20 -0,43 -3,55 -3,39 -3,33 

Curtose 70,57 -1,11 0,46 21,75 24,27 22,01 

 

Apêndice I-B) Estatísticas descritivas de alumina nos dados validados e tratados.  

Medida HA HB SI SIA SIP WH 

Quantidade 2065 926 898 170 1202 1458 

Mínimo 0,02 0,03 0,00 0,21 0,04 0,15 

Máximo 4,05 3,57 11,51 8,46 3,62 20,20 

Média 1,28 0,91 0,73 2,18 0,65 3,25 

Mediana 1,27 0,82 0,61 1,89 0,51 2,86 

Variância 0,28 0,20 0,35 1,83 0,18 2,31 

Desvio Padrão 0,53 0,44 0,60 1,35 0,42 1,52 

Coef. de Variação 0,42 0,49 0,81 0,62 0,65 0,47 

Assimetria 0,24 0,84 10,25 1,45 1,85 3,52 

Curtose -0,27 1,18 166,52 3,03 5,25 25,23 
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Apêndice I-C) Estatísticas descritivas de fósforo nos dados validados e tratados.  

Medida HA HB SI SIA SIP WH 

Quantidade 2065 926 898 170 1202 1458 

Mínimo 0,00 0,00 0,00 0,00 0,00 0,00 

Máximo 6,43 4,41 4,49 7,57 3,25 10,61 

Média 0,12 0,10 0,10 0,59 0,06 0,15 

Mediana 0,06 0,05 0,05 0,09 0,04 0,08 

Variância 0,27 0,13 0,16 2,98 0,05 0,55 

Desvio Padrão 0,52 0,35 0,40 1,72 0,22 0,74 

Coef. de Variação 4,26 3,60 4,00 2,91 3,47 4,78 

Assimetria 8,21 7,96 7,73 3,19 11,62 10,98 

Curtose 70,41 67,50 62,36 8,50 140,85 125,10 

 

Apêndice I-D) Estatísticas descritivas de sílica nos dados validados e tratados.  

Medida HA HB SI SIA SIP WH 

Quantidade 2065 926 898 170 1202 1458 

Mínimo 0,00 0,00 0,00 0,00 0,00 0,00 

Máximo 8,53 12,90 20,23 36,85 93,30 46,57 

Média 2,49 7,43 10,51 4,42 23,88 2,75 

Mediana 2,01 7,65 13,60 3,05 22,58 1,59 

Variância 2,66 5,63 7,38 18,74 49,96 12,28 

Desvio Padrão 1,63 2,37 2,72 4,33 7,07 3,50 

Coef. de Variação 0,66 0,32 0,20 0,98 0,30 1,28 

Assimetria 0,99 -0,42 -1,48 3,34 2,89 4,63 

Curtose 0,19 -0,10 5,84 18,38 21,85 33,01 
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Apêndice I-E) Estatísticas descritivas de PPC nos dados validados e tratados.  

Medida HA HB SI SIA SIP WH 

Quantidade 2065 926 898 170 1202 1458 

Mínimo 1,22 1,06 0,80 2,35 0,00 1,57 

Máximo 8,60 8,10 11,24 13,79 6,53 14,37 

Média 3,73 3,08 2,36 7,18 2,03 6,97 

Mediana 3,71 2,78 2,13 7,10 1,85 6,67 

Variância 1,44 1,71 0,96 3,88 0,69 4,80 

Desvio Padrão 1,20 1,31 0,98 1,97 0,83 2,19 

Coef. de Variação 0,32 0,42 0,41 0,27 0,41 0,31 

Assimetria 0,25 1,17 2,26 0,59 1,43 0,40 

Curtose -0,54 1,22 10,64 0,87 3,25 0,08 
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APÊNDICE II – BOXPLOTS POR LITOTIPO 

   

           

 

Apêndice II) Boxplots dos teores de (a) ferro, (b) alumina, (c) fósforo e (d) sílica e (e) da perda por calcinação do 
banco de dados validado e tratado. 
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APÊNDICE III – HISTOGRAMAS 

Apêndice III) Histograma dos teores de ferro, alumina, fósforo, sílica e da porcentagem de PPC para (a) o banco 
de dados validado e (b) o banco de dados validado e tratado. 
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APÊNDICE IV – MALHA COM LEGENDAS DE TEORES E PPC 

    

 

Apêndice IV-A) Malha com legenda dos teores de ferro em planta e em perspectiva. 
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Apêndice IV-B) Malha com legenda de teor de alumina em planta e em perspectiva.  
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Apêndice IV-C) Malha com legenda de teor de fósforo em planta e em perspectiva.  
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Apêndice IV-D) Malha com legenda de teor de sílica em planta e em perspectiva.  
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Apêndice IV-E) Malha com legenda de PPC em planta e em perspectiva.  
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APÊNDICE V – GRÁFICOS DE DISPERSÃO 

Apêndice V) Gráficos de dispersão entre todas as variáveis numéricas (Fe, Al2O3, P, SiO2 e PPC) com legenda 
de litotipos. 
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APÊNDICE VI – MODELOS DE VARIOGRAMA DO FERRO 

Apêndice VI-A) Modelos teóricos de variograma dos subdomínios estéril e minério no cenário de agrupamento 
por litotipos. 

 

Apêndice VI-B) Modelos teóricos de variograma dos subdomínios estéril e minério no cenário de agrupamento 
do K-means.
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Apêndice VI-C) Modelos teóricos de variograma dos subdomínios estéril e minério no cenário de agrupamento 
do Aglomerativo Hierárquico. 

 

Apêndice VI-D) Modelos teóricos de variograma dos subdomínios estéril e minério no cenário de agrupamento 
do Aglomerativo Hierárquico Geoestatístico. 
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APÊNDICE VII – ELIPSOIDES DE CONTINUIDADE 

Apêndice VII) Elipsoides de continuidade do ferro no domínio único e nos subdomínios de minério dos cenários 
de agrupamento. 
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APÊNDICE VIII – HISTOGRAMAS DOS TEORES ESTIMADOS DE FERRO 

Apêndice VIII) Histogramas dos teores de ferro das amostras e estimados em todos os cenários. 
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APÊNDICE IX – VALIDAÇÕES CRUZADAS 

Apêndice IX-A) Histogramas das diferenças entre os teores reais e as estimativas pontuais (erro).  
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Apêndice IX-B) Gráfico de dispersão entre os teores reais e as estimativas pontuais.  
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APÊNDICE X – GRÁFICOS QUANTIL-QUANTIL 

Apêndice X) Gráficos Quantil-Quantil entre o conjunto amostral e os teores de ferro estimados em cada cenário. 

 

 


